645571e47c
Add test for 'non-BIP68-final'.
224 lines
5.3 KiB
Python
224 lines
5.3 KiB
Python
#!/usr/bin/env python
|
|
# -*- coding: utf-8 -*-
|
|
|
|
import os
|
|
import codecs
|
|
import hashlib
|
|
import secrets
|
|
|
|
from .contrib.ellipticcurve import CurveFp, Point, INFINITY, jacobi_symbol
|
|
|
|
|
|
class ECCParameters():
|
|
def __init__(self, p, a, b, Gx, Gy, o):
|
|
self.p = p
|
|
self.a = a
|
|
self.b = b
|
|
self.Gx = Gx
|
|
self.Gy = Gy
|
|
self.o = o
|
|
|
|
|
|
ep = ECCParameters(
|
|
p=0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f,
|
|
a=0x0,
|
|
b=0x7,
|
|
Gx=0x79be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798,
|
|
Gy=0x483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8,
|
|
o=0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141)
|
|
|
|
|
|
curve_secp256k1 = CurveFp(ep.p, ep.a, ep.b)
|
|
G = Point(curve_secp256k1, ep.Gx, ep.Gy, ep.o)
|
|
SECP256K1_ORDER_HALF = ep.o // 2
|
|
|
|
|
|
def ToDER(P):
|
|
return bytes((4, )) + int(P.x()).to_bytes(32, byteorder='big') + int(P.y()).to_bytes(32, byteorder='big')
|
|
|
|
|
|
def bytes32ToInt(b):
|
|
return int.from_bytes(b, byteorder='big')
|
|
|
|
|
|
def intToBytes32(i):
|
|
return i.to_bytes(32, byteorder='big')
|
|
|
|
|
|
def intToBytes32_le(i):
|
|
return i.to_bytes(32, byteorder='little')
|
|
|
|
|
|
def bytesToHexStr(b):
|
|
return codecs.encode(b, 'hex').decode('utf-8')
|
|
|
|
|
|
def hexStrToBytes(h):
|
|
if h.startswith('0x'):
|
|
h = h[2:]
|
|
return bytes.fromhex(h)
|
|
|
|
|
|
def getSecretBytes():
|
|
i = 1 + secrets.randbelow(ep.o - 1)
|
|
return intToBytes32(i)
|
|
|
|
|
|
def getSecretInt():
|
|
return 1 + secrets.randbelow(ep.o - 1)
|
|
|
|
|
|
def getInsecureBytes():
|
|
while True:
|
|
s = os.urandom(32)
|
|
|
|
s_test = int.from_bytes(s, byteorder='big')
|
|
if s_test > 1 and s_test < ep.o:
|
|
return s
|
|
|
|
|
|
def getInsecureInt():
|
|
while True:
|
|
s = os.urandom(32)
|
|
|
|
s_test = int.from_bytes(s, byteorder='big')
|
|
if s_test > 1 and s_test < ep.o:
|
|
return s_test
|
|
|
|
|
|
def powMod(x, y, z):
|
|
# Calculate (x ** y) % z efficiently.
|
|
number = 1
|
|
while y:
|
|
if y & 1:
|
|
number = number * x % z
|
|
y >>= 1 # y //= 2
|
|
|
|
x = x * x % z
|
|
return number
|
|
|
|
|
|
def ExpandPoint(xb, sign):
|
|
x = int.from_bytes(xb, byteorder='big')
|
|
a = (powMod(x, 3, ep.p) + 7) % ep.p
|
|
y = powMod(a, (ep.p + 1) // 4, ep.p)
|
|
|
|
if sign:
|
|
y = ep.p - y
|
|
return Point(curve_secp256k1, x, y, ep.o)
|
|
|
|
|
|
def CPKToPoint(cpk):
|
|
y_parity = cpk[0] - 2
|
|
|
|
x = int.from_bytes(cpk[1:], byteorder='big')
|
|
a = (powMod(x, 3, ep.p) + 7) % ep.p
|
|
y = powMod(a, (ep.p + 1) // 4, ep.p)
|
|
|
|
if y % 2 != y_parity:
|
|
y = ep.p - y
|
|
|
|
return Point(curve_secp256k1, x, y, ep.o)
|
|
|
|
|
|
def pointToCPK2(point, ind=0x09):
|
|
# The function is_square(x), where x is an integer, returns whether or not x is a quadratic residue modulo p. Since p is prime, it is equivalent to the Legendre symbol (x / p) = x(p-1)/2 mod p being equal to 1[8].
|
|
ind = bytes((ind ^ (1 if jacobi_symbol(point.y(), ep.p) == 1 else 0),))
|
|
return ind + point.x().to_bytes(32, byteorder='big')
|
|
|
|
|
|
def pointToCPK(point):
|
|
|
|
y = point.y().to_bytes(32, byteorder='big')
|
|
ind = bytes((0x03,)) if y[31] % 2 else bytes((0x02,))
|
|
|
|
cpk = ind + point.x().to_bytes(32, byteorder='big')
|
|
return cpk
|
|
|
|
|
|
def secretToCPK(secret):
|
|
secretInt = secret if isinstance(secret, int) \
|
|
else int.from_bytes(secret, byteorder='big')
|
|
|
|
R = G * secretInt
|
|
|
|
Y = R.y().to_bytes(32, byteorder='big')
|
|
ind = bytes((0x03,)) if Y[31] % 2 else bytes((0x02,))
|
|
|
|
pubkey = ind + R.x().to_bytes(32, byteorder='big')
|
|
|
|
return pubkey
|
|
|
|
|
|
def getKeypair():
|
|
secretBytes = getSecretBytes()
|
|
return secretBytes, secretToCPK(secretBytes)
|
|
|
|
|
|
def hashToCurve(pubkey):
|
|
|
|
xBytes = hashlib.sha256(pubkey).digest()
|
|
x = int.from_bytes(xBytes, byteorder='big')
|
|
|
|
for k in range(0, 100):
|
|
# get matching y element for point
|
|
y_parity = 0 # always pick 0,
|
|
a = (powMod(x, 3, ep.p) + 7) % ep.p
|
|
y = powMod(a, (ep.p + 1) // 4, ep.p)
|
|
|
|
# print("before parity %x" % (y))
|
|
if y % 2 != y_parity:
|
|
y = ep.p - y
|
|
|
|
# If x is always mod P, can R ever not be on the curve?
|
|
try:
|
|
R = Point(curve_secp256k1, x, y, ep.o)
|
|
except Exception:
|
|
x = (x + 1) % ep.p # % P?
|
|
continue
|
|
|
|
if R == INFINITY or R * ep.o != INFINITY: # is R * O != INFINITY check necessary? Validation of Elliptic Curve Public Keys says no if cofactor = 1
|
|
x = (x + 1) % ep.p # % P?
|
|
continue
|
|
return R
|
|
|
|
raise ValueError('hashToCurve failed for 100 tries')
|
|
|
|
|
|
def hash256(inb):
|
|
return hashlib.sha256(inb).digest()
|
|
|
|
|
|
i2b = intToBytes32
|
|
b2i = bytes32ToInt
|
|
b2h = bytesToHexStr
|
|
h2b = hexStrToBytes
|
|
|
|
|
|
def i2h(x):
|
|
return b2h(i2b(x))
|
|
|
|
|
|
def testEccUtils():
|
|
print('testEccUtils()')
|
|
|
|
G_enc = ToDER(G)
|
|
assert(G_enc.hex() == '0479be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8')
|
|
|
|
G_enc = pointToCPK(G)
|
|
assert(G_enc.hex() == '0279be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798')
|
|
G_dec = CPKToPoint(G_enc)
|
|
assert(G_dec == G)
|
|
|
|
G_enc = pointToCPK2(G)
|
|
assert(G_enc.hex() == '0879be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798')
|
|
|
|
H = hashToCurve(ToDER(G))
|
|
assert(pointToCPK(H).hex() == '0250929b74c1a04954b78b4b6035e97a5e078a5a0f28ec96d547bfee9ace803ac0')
|
|
|
|
print('Passed.')
|
|
|
|
|
|
if __name__ == "__main__":
|
|
testEccUtils()
|