Host-customized fork of https://github.com/tecnovert/basicswap/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
223 lines
5.3 KiB
223 lines
5.3 KiB
#!/usr/bin/env python |
|
# -*- coding: utf-8 -*- |
|
|
|
import os |
|
import codecs |
|
import hashlib |
|
import secrets |
|
|
|
from .contrib.ellipticcurve import CurveFp, Point, INFINITY, jacobi_symbol |
|
|
|
|
|
class ECCParameters(): |
|
def __init__(self, p, a, b, Gx, Gy, o): |
|
self.p = p |
|
self.a = a |
|
self.b = b |
|
self.Gx = Gx |
|
self.Gy = Gy |
|
self.o = o |
|
|
|
|
|
ep = ECCParameters( |
|
p=0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f, |
|
a=0x0, |
|
b=0x7, |
|
Gx=0x79be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798, |
|
Gy=0x483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8, |
|
o=0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141) |
|
|
|
|
|
curve_secp256k1 = CurveFp(ep.p, ep.a, ep.b) |
|
G = Point(curve_secp256k1, ep.Gx, ep.Gy, ep.o) |
|
SECP256K1_ORDER_HALF = ep.o // 2 |
|
|
|
|
|
def ToDER(P): |
|
return bytes((4, )) + int(P.x()).to_bytes(32, byteorder='big') + int(P.y()).to_bytes(32, byteorder='big') |
|
|
|
|
|
def bytes32ToInt(b): |
|
return int.from_bytes(b, byteorder='big') |
|
|
|
|
|
def intToBytes32(i): |
|
return i.to_bytes(32, byteorder='big') |
|
|
|
|
|
def intToBytes32_le(i): |
|
return i.to_bytes(32, byteorder='little') |
|
|
|
|
|
def bytesToHexStr(b): |
|
return codecs.encode(b, 'hex').decode('utf-8') |
|
|
|
|
|
def hexStrToBytes(h): |
|
if h.startswith('0x'): |
|
h = h[2:] |
|
return bytes.fromhex(h) |
|
|
|
|
|
def getSecretBytes(): |
|
i = 1 + secrets.randbelow(ep.o - 1) |
|
return intToBytes32(i) |
|
|
|
|
|
def getSecretInt(): |
|
return 1 + secrets.randbelow(ep.o - 1) |
|
|
|
|
|
def getInsecureBytes(): |
|
while True: |
|
s = os.urandom(32) |
|
|
|
s_test = int.from_bytes(s, byteorder='big') |
|
if s_test > 1 and s_test < ep.o: |
|
return s |
|
|
|
|
|
def getInsecureInt(): |
|
while True: |
|
s = os.urandom(32) |
|
|
|
s_test = int.from_bytes(s, byteorder='big') |
|
if s_test > 1 and s_test < ep.o: |
|
return s_test |
|
|
|
|
|
def powMod(x, y, z): |
|
# Calculate (x ** y) % z efficiently. |
|
number = 1 |
|
while y: |
|
if y & 1: |
|
number = number * x % z |
|
y >>= 1 # y //= 2 |
|
|
|
x = x * x % z |
|
return number |
|
|
|
|
|
def ExpandPoint(xb, sign): |
|
x = int.from_bytes(xb, byteorder='big') |
|
a = (powMod(x, 3, ep.p) + 7) % ep.p |
|
y = powMod(a, (ep.p + 1) // 4, ep.p) |
|
|
|
if sign: |
|
y = ep.p - y |
|
return Point(curve_secp256k1, x, y, ep.o) |
|
|
|
|
|
def CPKToPoint(cpk): |
|
y_parity = cpk[0] - 2 |
|
|
|
x = int.from_bytes(cpk[1:], byteorder='big') |
|
a = (powMod(x, 3, ep.p) + 7) % ep.p |
|
y = powMod(a, (ep.p + 1) // 4, ep.p) |
|
|
|
if y % 2 != y_parity: |
|
y = ep.p - y |
|
|
|
return Point(curve_secp256k1, x, y, ep.o) |
|
|
|
|
|
def pointToCPK2(point, ind=0x09): |
|
# The function is_square(x), where x is an integer, returns whether or not x is a quadratic residue modulo p. Since p is prime, it is equivalent to the Legendre symbol (x / p) = x(p-1)/2 mod p being equal to 1[8]. |
|
ind = bytes((ind ^ (1 if jacobi_symbol(point.y(), ep.p) == 1 else 0),)) |
|
return ind + point.x().to_bytes(32, byteorder='big') |
|
|
|
|
|
def pointToCPK(point): |
|
|
|
y = point.y().to_bytes(32, byteorder='big') |
|
ind = bytes((0x03,)) if y[31] % 2 else bytes((0x02,)) |
|
|
|
cpk = ind + point.x().to_bytes(32, byteorder='big') |
|
return cpk |
|
|
|
|
|
def secretToCPK(secret): |
|
secretInt = secret if isinstance(secret, int) \ |
|
else int.from_bytes(secret, byteorder='big') |
|
|
|
R = G * secretInt |
|
|
|
Y = R.y().to_bytes(32, byteorder='big') |
|
ind = bytes((0x03,)) if Y[31] % 2 else bytes((0x02,)) |
|
|
|
pubkey = ind + R.x().to_bytes(32, byteorder='big') |
|
|
|
return pubkey |
|
|
|
|
|
def getKeypair(): |
|
secretBytes = getSecretBytes() |
|
return secretBytes, secretToCPK(secretBytes) |
|
|
|
|
|
def hashToCurve(pubkey): |
|
|
|
xBytes = hashlib.sha256(pubkey).digest() |
|
x = int.from_bytes(xBytes, byteorder='big') |
|
|
|
for k in range(0, 100): |
|
# get matching y element for point |
|
y_parity = 0 # always pick 0, |
|
a = (powMod(x, 3, ep.p) + 7) % ep.p |
|
y = powMod(a, (ep.p + 1) // 4, ep.p) |
|
|
|
# print("before parity %x" % (y)) |
|
if y % 2 != y_parity: |
|
y = ep.p - y |
|
|
|
# If x is always mod P, can R ever not be on the curve? |
|
try: |
|
R = Point(curve_secp256k1, x, y, ep.o) |
|
except Exception: |
|
x = (x + 1) % ep.p # % P? |
|
continue |
|
|
|
if R == INFINITY or R * ep.o != INFINITY: # is R * O != INFINITY check necessary? Validation of Elliptic Curve Public Keys says no if cofactor = 1 |
|
x = (x + 1) % ep.p # % P? |
|
continue |
|
return R |
|
|
|
raise ValueError('hashToCurve failed for 100 tries') |
|
|
|
|
|
def hash256(inb): |
|
return hashlib.sha256(inb).digest() |
|
|
|
|
|
i2b = intToBytes32 |
|
b2i = bytes32ToInt |
|
b2h = bytesToHexStr |
|
h2b = hexStrToBytes |
|
|
|
|
|
def i2h(x): |
|
return b2h(i2b(x)) |
|
|
|
|
|
def testEccUtils(): |
|
print('testEccUtils()') |
|
|
|
G_enc = ToDER(G) |
|
assert(G_enc.hex() == '0479be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8') |
|
|
|
G_enc = pointToCPK(G) |
|
assert(G_enc.hex() == '0279be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798') |
|
G_dec = CPKToPoint(G_enc) |
|
assert(G_dec == G) |
|
|
|
G_enc = pointToCPK2(G) |
|
assert(G_enc.hex() == '0879be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798') |
|
|
|
H = hashToCurve(ToDER(G)) |
|
assert(pointToCPK(H).hex() == '0250929b74c1a04954b78b4b6035e97a5e078a5a0f28ec96d547bfee9ace803ac0') |
|
|
|
print('Passed.') |
|
|
|
|
|
if __name__ == "__main__": |
|
testEccUtils()
|
|
|