Host-customized fork of https://github.com/tecnovert/basicswap/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
486 lines
14 KiB
486 lines
14 KiB
#!/usr/bin/env python |
|
# -*- coding: utf-8 -*- |
|
|
|
# |
|
# Implementation of elliptic curves, for cryptographic applications. |
|
# |
|
# This module doesn't provide any way to choose a random elliptic |
|
# curve, nor to verify that an elliptic curve was chosen randomly, |
|
# because one can simply use NIST's standard curves. |
|
# |
|
# Notes from X9.62-1998 (draft): |
|
# Nomenclature: |
|
# - Q is a public key. |
|
# The "Elliptic Curve Domain Parameters" include: |
|
# - q is the "field size", which in our case equals p. |
|
# - p is a big prime. |
|
# - G is a point of prime order (5.1.1.1). |
|
# - n is the order of G (5.1.1.1). |
|
# Public-key validation (5.2.2): |
|
# - Verify that Q is not the point at infinity. |
|
# - Verify that X_Q and Y_Q are in [0,p-1]. |
|
# - Verify that Q is on the curve. |
|
# - Verify that nQ is the point at infinity. |
|
# Signature generation (5.3): |
|
# - Pick random k from [1,n-1]. |
|
# Signature checking (5.4.2): |
|
# - Verify that r and s are in [1,n-1]. |
|
# |
|
# Version of 2008.11.25. |
|
# |
|
# Revision history: |
|
# 2005.12.31 - Initial version. |
|
# 2008.11.25 - Change CurveFp.is_on to contains_point. |
|
# |
|
# Written in 2005 by Peter Pearson and placed in the public domain. |
|
|
|
def inverse_mod(a, m): |
|
"""Inverse of a mod m.""" |
|
|
|
if a < 0 or m <= a: |
|
a = a % m |
|
|
|
# From Ferguson and Schneier, roughly: |
|
|
|
c, d = a, m |
|
uc, vc, ud, vd = 1, 0, 0, 1 |
|
while c != 0: |
|
q, c, d = divmod(d, c) + (c,) |
|
uc, vc, ud, vd = ud - q * uc, vd - q * vc, uc, vc |
|
|
|
# At this point, d is the GCD, and ud*a+vd*m = d. |
|
# If d == 1, this means that ud is a inverse. |
|
|
|
assert d == 1 |
|
if ud > 0: |
|
return ud |
|
else: |
|
return ud + m |
|
|
|
|
|
def modular_sqrt(a, p): |
|
# from http://eli.thegreenplace.net/2009/03/07/computing-modular-square-roots-in-python/ |
|
""" Find a quadratic residue (mod p) of 'a'. p |
|
must be an odd prime. |
|
|
|
Solve the congruence of the form: |
|
x^2 = a (mod p) |
|
And returns x. Note that p - x is also a root. |
|
|
|
0 is returned is no square root exists for |
|
these a and p. |
|
|
|
The Tonelli-Shanks algorithm is used (except |
|
for some simple cases in which the solution |
|
is known from an identity). This algorithm |
|
runs in polynomial time (unless the |
|
generalized Riemann hypothesis is false). |
|
""" |
|
# Simple cases |
|
# |
|
if legendre_symbol(a, p) != 1: |
|
return 0 |
|
elif a == 0: |
|
return 0 |
|
elif p == 2: |
|
return p |
|
elif p % 4 == 3: |
|
return pow(a, (p + 1) // 4, p) |
|
|
|
# Partition p-1 to s * 2^e for an odd s (i.e. |
|
# reduce all the powers of 2 from p-1) |
|
# |
|
s = p - 1 |
|
e = 0 |
|
while s % 2 == 0: |
|
s /= 2 |
|
e += 1 |
|
|
|
# Find some 'n' with a legendre symbol n|p = -1. |
|
# Shouldn't take long. |
|
# |
|
n = 2 |
|
while legendre_symbol(n, p) != -1: |
|
n += 1 |
|
|
|
# Here be dragons! |
|
# Read the paper "Square roots from 1; 24, 51, |
|
# 10 to Dan Shanks" by Ezra Brown for more |
|
# information |
|
# |
|
|
|
# x is a guess of the square root that gets better |
|
# with each iteration. |
|
# b is the "fudge factor" - by how much we're off |
|
# with the guess. The invariant x^2 = ab (mod p) |
|
# is maintained throughout the loop. |
|
# g is used for successive powers of n to update |
|
# both a and b |
|
# r is the exponent - decreases with each update |
|
# |
|
x = pow(a, (s + 1) // 2, p) |
|
b = pow(a, s, p) |
|
g = pow(n, s, p) |
|
r = e |
|
|
|
while True: |
|
t = b |
|
m = 0 |
|
for m in range(r): |
|
if t == 1: |
|
break |
|
t = pow(t, 2, p) |
|
|
|
if m == 0: |
|
return x |
|
|
|
gs = pow(g, 2 ** (r - m - 1), p) |
|
g = (gs * gs) % p |
|
x = (x * gs) % p |
|
b = (b * g) % p |
|
r = m |
|
|
|
|
|
def legendre_symbol(a, p): |
|
""" Compute the Legendre symbol a|p using |
|
Euler's criterion. p is a prime, a is |
|
relatively prime to p (if p divides |
|
a, then a|p = 0) |
|
|
|
Returns 1 if a has a square root modulo |
|
p, -1 otherwise. |
|
""" |
|
ls = pow(a, (p - 1) // 2, p) |
|
return -1 if ls == p - 1 else ls |
|
|
|
|
|
def jacobi_symbol(n, k): |
|
"""Compute the Jacobi symbol of n modulo k |
|
|
|
See http://en.wikipedia.org/wiki/Jacobi_symbol |
|
|
|
For our application k is always prime, so this is the same as the Legendre symbol.""" |
|
assert k > 0 and k & 1, "jacobi symbol is only defined for positive odd k" |
|
n %= k |
|
t = 0 |
|
while n != 0: |
|
while n & 1 == 0: |
|
n >>= 1 |
|
r = k & 7 |
|
t ^= (r == 3 or r == 5) |
|
n, k = k, n |
|
t ^= (n & k & 3 == 3) |
|
n = n % k |
|
if k == 1: |
|
return -1 if t else 1 |
|
return 0 |
|
|
|
|
|
class CurveFp(object): |
|
"""Elliptic Curve over the field of integers modulo a prime.""" |
|
def __init__(self, p, a, b): |
|
"""The curve of points satisfying y^2 = x^3 + a*x + b (mod p).""" |
|
self.__p = p |
|
self.__a = a |
|
self.__b = b |
|
|
|
def p(self): |
|
return self.__p |
|
|
|
def a(self): |
|
return self.__a |
|
|
|
def b(self): |
|
return self.__b |
|
|
|
def contains_point(self, x, y): |
|
"""Is the point (x,y) on this curve?""" |
|
return (y * y - (x * x * x + self.__a * x + self.__b)) % self.__p == 0 |
|
|
|
|
|
class Point(object): |
|
""" A point on an elliptic curve. Altering x and y is forbidding, |
|
but they can be read by the x() and y() methods.""" |
|
def __init__(self, curve, x, y, order=None): |
|
"""curve, x, y, order; order (optional) is the order of this point.""" |
|
self.__curve = curve |
|
self.__x = x |
|
self.__y = y |
|
self.__order = order |
|
# self.curve is allowed to be None only for INFINITY: |
|
if self.__curve: |
|
assert self.__curve.contains_point(x, y) |
|
if order: |
|
assert self * order == INFINITY |
|
|
|
def __eq__(self, other): |
|
"""Return 1 if the points are identical, 0 otherwise.""" |
|
if self.__curve == other.__curve \ |
|
and self.__x == other.__x \ |
|
and self.__y == other.__y: |
|
return 1 |
|
else: |
|
return 0 |
|
|
|
def __add__(self, other): |
|
"""Add one point to another point.""" |
|
|
|
# X9.62 B.3: |
|
if other == INFINITY: |
|
return self |
|
if self == INFINITY: |
|
return other |
|
assert self.__curve == other.__curve |
|
if self.__x == other.__x: |
|
if (self.__y + other.__y) % self.__curve.p() == 0: |
|
return INFINITY |
|
else: |
|
return self.double() |
|
|
|
p = self.__curve.p() |
|
|
|
l = ((other.__y - self.__y) * inverse_mod(other.__x - self.__x, p)) % p |
|
|
|
x3 = (l * l - self.__x - other.__x) % p |
|
y3 = (l * (self.__x - x3) - self.__y) % p |
|
|
|
return Point(self.__curve, x3, y3) |
|
|
|
def __sub__(self, other): |
|
#The inverse of a point P=(xP,yP) is its reflexion across the x-axis : P′=(xP,−yP). |
|
#If you want to compute Q−P, just replace yP by −yP in the usual formula for point addition. |
|
|
|
# X9.62 B.3: |
|
if other == INFINITY: |
|
return self |
|
if self == INFINITY: |
|
return other |
|
assert self.__curve == other.__curve |
|
|
|
p = self.__curve.p() |
|
#opi = inverse_mod(other.__y, p) |
|
opi = -other.__y % p |
|
#print(opi) |
|
#print(-other.__y % p) |
|
|
|
if self.__x == other.__x: |
|
if (self.__y + opi) % self.__curve.p() == 0: |
|
return INFINITY |
|
else: |
|
return self.double |
|
|
|
l = ((opi - self.__y) * inverse_mod(other.__x - self.__x, p)) % p |
|
|
|
x3 = (l * l - self.__x - other.__x) % p |
|
y3 = (l * (self.__x - x3) - self.__y) % p |
|
|
|
return Point(self.__curve, x3, y3) |
|
|
|
def __mul__(self, e): |
|
if self.__order: |
|
e %= self.__order |
|
if e == 0 or self == INFINITY: |
|
return INFINITY |
|
result, q = INFINITY, self |
|
while e: |
|
if e & 1: |
|
result += q |
|
e, q = e >> 1, q.double() |
|
return result |
|
|
|
""" |
|
def __mul__(self, other): |
|
#Multiply a point by an integer. |
|
|
|
def leftmost_bit( x ): |
|
assert x > 0 |
|
result = 1 |
|
while result <= x: result = 2 * result |
|
return result // 2 |
|
|
|
e = other |
|
if self.__order: e = e % self.__order |
|
if e == 0: return INFINITY |
|
if self == INFINITY: return INFINITY |
|
assert e > 0 |
|
|
|
# From X9.62 D.3.2: |
|
|
|
e3 = 3 * e |
|
negative_self = Point( self.__curve, self.__x, -self.__y, self.__order ) |
|
i = leftmost_bit( e3 ) // 2 |
|
result = self |
|
# print "Multiplying %s by %d (e3 = %d):" % ( self, other, e3 ) |
|
while i > 1: |
|
result = result.double() |
|
if ( e3 & i ) != 0 and ( e & i ) == 0: result = result + self |
|
if ( e3 & i ) == 0 and ( e & i ) != 0: result = result + negative_self |
|
# print ". . . i = %d, result = %s" % ( i, result ) |
|
i = i // 2 |
|
|
|
return result |
|
""" |
|
|
|
def __rmul__(self, other): |
|
"""Multiply a point by an integer.""" |
|
|
|
return self * other |
|
|
|
def __str__(self): |
|
if self == INFINITY: |
|
return "infinity" |
|
return "(%d, %d)" % (self.__x, self.__y) |
|
|
|
def inverse(self): |
|
return Point(self.__curve, self.__x, -self.__y % self.__curve.p()) |
|
|
|
def double(self): |
|
"""Return a new point that is twice the old.""" |
|
|
|
if self == INFINITY: |
|
return INFINITY |
|
|
|
# X9.62 B.3: |
|
|
|
p = self.__curve.p() |
|
a = self.__curve.a() |
|
|
|
l = ((3 * self.__x * self.__x + a) * inverse_mod(2 * self.__y, p)) % p |
|
|
|
x3 = (l * l - 2 * self.__x) % p |
|
y3 = (l * (self.__x - x3) - self.__y) % p |
|
|
|
return Point(self.__curve, x3, y3) |
|
|
|
def x(self): |
|
return self.__x |
|
|
|
def y(self): |
|
return self.__y |
|
|
|
def pair(self): |
|
return (self.__x, self.__y) |
|
|
|
def curve(self): |
|
return self.__curve |
|
|
|
def order(self): |
|
return self.__order |
|
|
|
|
|
# This one point is the Point At Infinity for all purposes: |
|
INFINITY = Point(None, None, None) |
|
|
|
|
|
def __main__(): |
|
|
|
class FailedTest(Exception): |
|
pass |
|
|
|
def test_add(c, x1, y1, x2, y2, x3, y3): |
|
"""We expect that on curve c, (x1,y1) + (x2, y2 ) = (x3, y3).""" |
|
p1 = Point(c, x1, y1) |
|
p2 = Point(c, x2, y2) |
|
p3 = p1 + p2 |
|
print("%s + %s = %s" % (p1, p2, p3)) |
|
if p3.x() != x3 or p3.y() != y3: |
|
raise FailedTest("Failure: should give (%d,%d)." % (x3, y3)) |
|
else: |
|
print(" Good.") |
|
|
|
def test_double(c, x1, y1, x3, y3): |
|
"""We expect that on curve c, 2*(x1,y1) = (x3, y3).""" |
|
p1 = Point(c, x1, y1) |
|
p3 = p1.double() |
|
print("%s doubled = %s" % (p1, p3)) |
|
if p3.x() != x3 or p3.y() != y3: |
|
raise FailedTest("Failure: should give (%d,%d)." % (x3, y3)) |
|
else: |
|
print(" Good.") |
|
|
|
def test_double_infinity(c): |
|
"""We expect that on curve c, 2*INFINITY = INFINITY.""" |
|
p1 = INFINITY |
|
p3 = p1.double() |
|
print("%s doubled = %s" % (p1, p3)) |
|
if p3.x() != INFINITY.x() or p3.y() != INFINITY.y(): |
|
raise FailedTest("Failure: should give (%d,%d)." % (INFINITY.x(), INFINITY.y())) |
|
else: |
|
print(" Good.") |
|
|
|
def test_multiply(c, x1, y1, m, x3, y3): |
|
"""We expect that on curve c, m*(x1,y1) = (x3,y3).""" |
|
p1 = Point(c, x1, y1) |
|
p3 = p1 * m |
|
print("%s * %d = %s" % (p1, m, p3)) |
|
if p3.x() != x3 or p3.y() != y3: |
|
raise FailedTest("Failure: should give (%d,%d)." % (x3, y3)) |
|
else: |
|
print(" Good.") |
|
|
|
# A few tests from X9.62 B.3: |
|
|
|
c = CurveFp(23, 1, 1) |
|
test_add(c, 3, 10, 9, 7, 17, 20) |
|
test_double(c, 3, 10, 7, 12) |
|
test_add(c, 3, 10, 3, 10, 7, 12) # (Should just invoke double.) |
|
test_multiply(c, 3, 10, 2, 7, 12) |
|
|
|
test_double_infinity(c) |
|
|
|
# From X9.62 I.1 (p. 96): |
|
|
|
g = Point(c, 13, 7, 7) |
|
|
|
check = INFINITY |
|
for i in range(7 + 1): |
|
p = (i % 7) * g |
|
print("%s * %d = %s, expected %s . . ." % (g, i, p, check)) |
|
if p == check: |
|
print(" Good.") |
|
else: |
|
raise FailedTest("Bad.") |
|
check = check + g |
|
|
|
# NIST Curve P-192: |
|
p = 6277101735386680763835789423207666416083908700390324961279 |
|
r = 6277101735386680763835789423176059013767194773182842284081 |
|
#s = 0x3045ae6fc8422f64ed579528d38120eae12196d5L |
|
c = 0x3099d2bbbfcb2538542dcd5fb078b6ef5f3d6fe2c745de65 |
|
b = 0x64210519e59c80e70fa7e9ab72243049feb8deecc146b9b1 |
|
Gx = 0x188da80eb03090f67cbf20eb43a18800f4ff0afd82ff1012 |
|
Gy = 0x07192b95ffc8da78631011ed6b24cdd573f977a11e794811 |
|
|
|
c192 = CurveFp(p, -3, b) |
|
p192 = Point(c192, Gx, Gy, r) |
|
|
|
# Checking against some sample computations presented |
|
# in X9.62: |
|
|
|
d = 651056770906015076056810763456358567190100156695615665659 |
|
Q = d * p192 |
|
if Q.x() != 0x62B12D60690CDCF330BABAB6E69763B471F994DD702D16A5: |
|
raise FailedTest("p192 * d came out wrong.") |
|
else: |
|
print("p192 * d came out right.") |
|
|
|
k = 6140507067065001063065065565667405560006161556565665656654 |
|
R = k * p192 |
|
if R.x() != 0x885052380FF147B734C330C43D39B2C4A89F29B0F749FEAD \ |
|
or R.y() != 0x9CF9FA1CBEFEFB917747A3BB29C072B9289C2547884FD835: |
|
raise FailedTest("k * p192 came out wrong.") |
|
else: |
|
print("k * p192 came out right.") |
|
|
|
u1 = 2563697409189434185194736134579731015366492496392189760599 |
|
u2 = 6266643813348617967186477710235785849136406323338782220568 |
|
temp = u1 * p192 + u2 * Q |
|
if temp.x() != 0x885052380FF147B734C330C43D39B2C4A89F29B0F749FEAD \ |
|
or temp.y() != 0x9CF9FA1CBEFEFB917747A3BB29C072B9289C2547884FD835: |
|
raise FailedTest("u1 * p192 + u2 * Q came out wrong.") |
|
else: |
|
print("u1 * p192 + u2 * Q came out right.") |
|
|
|
|
|
if __name__ == "__main__": |
|
__main__()
|
|
|