487 lines
14 KiB
Python
487 lines
14 KiB
Python
#!/usr/bin/env python
|
||
# -*- coding: utf-8 -*-
|
||
|
||
#
|
||
# Implementation of elliptic curves, for cryptographic applications.
|
||
#
|
||
# This module doesn't provide any way to choose a random elliptic
|
||
# curve, nor to verify that an elliptic curve was chosen randomly,
|
||
# because one can simply use NIST's standard curves.
|
||
#
|
||
# Notes from X9.62-1998 (draft):
|
||
# Nomenclature:
|
||
# - Q is a public key.
|
||
# The "Elliptic Curve Domain Parameters" include:
|
||
# - q is the "field size", which in our case equals p.
|
||
# - p is a big prime.
|
||
# - G is a point of prime order (5.1.1.1).
|
||
# - n is the order of G (5.1.1.1).
|
||
# Public-key validation (5.2.2):
|
||
# - Verify that Q is not the point at infinity.
|
||
# - Verify that X_Q and Y_Q are in [0,p-1].
|
||
# - Verify that Q is on the curve.
|
||
# - Verify that nQ is the point at infinity.
|
||
# Signature generation (5.3):
|
||
# - Pick random k from [1,n-1].
|
||
# Signature checking (5.4.2):
|
||
# - Verify that r and s are in [1,n-1].
|
||
#
|
||
# Version of 2008.11.25.
|
||
#
|
||
# Revision history:
|
||
# 2005.12.31 - Initial version.
|
||
# 2008.11.25 - Change CurveFp.is_on to contains_point.
|
||
#
|
||
# Written in 2005 by Peter Pearson and placed in the public domain.
|
||
|
||
def inverse_mod(a, m):
|
||
"""Inverse of a mod m."""
|
||
|
||
if a < 0 or m <= a:
|
||
a = a % m
|
||
|
||
# From Ferguson and Schneier, roughly:
|
||
|
||
c, d = a, m
|
||
uc, vc, ud, vd = 1, 0, 0, 1
|
||
while c != 0:
|
||
q, c, d = divmod(d, c) + (c,)
|
||
uc, vc, ud, vd = ud - q * uc, vd - q * vc, uc, vc
|
||
|
||
# At this point, d is the GCD, and ud*a+vd*m = d.
|
||
# If d == 1, this means that ud is a inverse.
|
||
|
||
assert d == 1
|
||
if ud > 0:
|
||
return ud
|
||
else:
|
||
return ud + m
|
||
|
||
|
||
def modular_sqrt(a, p):
|
||
# from http://eli.thegreenplace.net/2009/03/07/computing-modular-square-roots-in-python/
|
||
""" Find a quadratic residue (mod p) of 'a'. p
|
||
must be an odd prime.
|
||
|
||
Solve the congruence of the form:
|
||
x^2 = a (mod p)
|
||
And returns x. Note that p - x is also a root.
|
||
|
||
0 is returned is no square root exists for
|
||
these a and p.
|
||
|
||
The Tonelli-Shanks algorithm is used (except
|
||
for some simple cases in which the solution
|
||
is known from an identity). This algorithm
|
||
runs in polynomial time (unless the
|
||
generalized Riemann hypothesis is false).
|
||
"""
|
||
# Simple cases
|
||
#
|
||
if legendre_symbol(a, p) != 1:
|
||
return 0
|
||
elif a == 0:
|
||
return 0
|
||
elif p == 2:
|
||
return p
|
||
elif p % 4 == 3:
|
||
return pow(a, (p + 1) // 4, p)
|
||
|
||
# Partition p-1 to s * 2^e for an odd s (i.e.
|
||
# reduce all the powers of 2 from p-1)
|
||
#
|
||
s = p - 1
|
||
e = 0
|
||
while s % 2 == 0:
|
||
s /= 2
|
||
e += 1
|
||
|
||
# Find some 'n' with a legendre symbol n|p = -1.
|
||
# Shouldn't take long.
|
||
#
|
||
n = 2
|
||
while legendre_symbol(n, p) != -1:
|
||
n += 1
|
||
|
||
# Here be dragons!
|
||
# Read the paper "Square roots from 1; 24, 51,
|
||
# 10 to Dan Shanks" by Ezra Brown for more
|
||
# information
|
||
#
|
||
|
||
# x is a guess of the square root that gets better
|
||
# with each iteration.
|
||
# b is the "fudge factor" - by how much we're off
|
||
# with the guess. The invariant x^2 = ab (mod p)
|
||
# is maintained throughout the loop.
|
||
# g is used for successive powers of n to update
|
||
# both a and b
|
||
# r is the exponent - decreases with each update
|
||
#
|
||
x = pow(a, (s + 1) // 2, p)
|
||
b = pow(a, s, p)
|
||
g = pow(n, s, p)
|
||
r = e
|
||
|
||
while True:
|
||
t = b
|
||
m = 0
|
||
for m in range(r):
|
||
if t == 1:
|
||
break
|
||
t = pow(t, 2, p)
|
||
|
||
if m == 0:
|
||
return x
|
||
|
||
gs = pow(g, 2 ** (r - m - 1), p)
|
||
g = (gs * gs) % p
|
||
x = (x * gs) % p
|
||
b = (b * g) % p
|
||
r = m
|
||
|
||
|
||
def legendre_symbol(a, p):
|
||
""" Compute the Legendre symbol a|p using
|
||
Euler's criterion. p is a prime, a is
|
||
relatively prime to p (if p divides
|
||
a, then a|p = 0)
|
||
|
||
Returns 1 if a has a square root modulo
|
||
p, -1 otherwise.
|
||
"""
|
||
ls = pow(a, (p - 1) // 2, p)
|
||
return -1 if ls == p - 1 else ls
|
||
|
||
|
||
def jacobi_symbol(n, k):
|
||
"""Compute the Jacobi symbol of n modulo k
|
||
|
||
See http://en.wikipedia.org/wiki/Jacobi_symbol
|
||
|
||
For our application k is always prime, so this is the same as the Legendre symbol."""
|
||
assert k > 0 and k & 1, "jacobi symbol is only defined for positive odd k"
|
||
n %= k
|
||
t = 0
|
||
while n != 0:
|
||
while n & 1 == 0:
|
||
n >>= 1
|
||
r = k & 7
|
||
t ^= (r == 3 or r == 5)
|
||
n, k = k, n
|
||
t ^= (n & k & 3 == 3)
|
||
n = n % k
|
||
if k == 1:
|
||
return -1 if t else 1
|
||
return 0
|
||
|
||
|
||
class CurveFp(object):
|
||
"""Elliptic Curve over the field of integers modulo a prime."""
|
||
def __init__(self, p, a, b):
|
||
"""The curve of points satisfying y^2 = x^3 + a*x + b (mod p)."""
|
||
self.__p = p
|
||
self.__a = a
|
||
self.__b = b
|
||
|
||
def p(self):
|
||
return self.__p
|
||
|
||
def a(self):
|
||
return self.__a
|
||
|
||
def b(self):
|
||
return self.__b
|
||
|
||
def contains_point(self, x, y):
|
||
"""Is the point (x,y) on this curve?"""
|
||
return (y * y - (x * x * x + self.__a * x + self.__b)) % self.__p == 0
|
||
|
||
|
||
class Point(object):
|
||
""" A point on an elliptic curve. Altering x and y is forbidding,
|
||
but they can be read by the x() and y() methods."""
|
||
def __init__(self, curve, x, y, order=None):
|
||
"""curve, x, y, order; order (optional) is the order of this point."""
|
||
self.__curve = curve
|
||
self.__x = x
|
||
self.__y = y
|
||
self.__order = order
|
||
# self.curve is allowed to be None only for INFINITY:
|
||
if self.__curve:
|
||
assert self.__curve.contains_point(x, y)
|
||
if order:
|
||
assert self * order == INFINITY
|
||
|
||
def __eq__(self, other):
|
||
"""Return 1 if the points are identical, 0 otherwise."""
|
||
if self.__curve == other.__curve \
|
||
and self.__x == other.__x \
|
||
and self.__y == other.__y:
|
||
return 1
|
||
else:
|
||
return 0
|
||
|
||
def __add__(self, other):
|
||
"""Add one point to another point."""
|
||
|
||
# X9.62 B.3:
|
||
if other == INFINITY:
|
||
return self
|
||
if self == INFINITY:
|
||
return other
|
||
assert self.__curve == other.__curve
|
||
if self.__x == other.__x:
|
||
if (self.__y + other.__y) % self.__curve.p() == 0:
|
||
return INFINITY
|
||
else:
|
||
return self.double()
|
||
|
||
p = self.__curve.p()
|
||
|
||
l = ((other.__y - self.__y) * inverse_mod(other.__x - self.__x, p)) % p
|
||
|
||
x3 = (l * l - self.__x - other.__x) % p
|
||
y3 = (l * (self.__x - x3) - self.__y) % p
|
||
|
||
return Point(self.__curve, x3, y3)
|
||
|
||
def __sub__(self, other):
|
||
#The inverse of a point P=(xP,yP) is its reflexion across the x-axis : P′=(xP,−yP).
|
||
#If you want to compute Q−P, just replace yP by −yP in the usual formula for point addition.
|
||
|
||
# X9.62 B.3:
|
||
if other == INFINITY:
|
||
return self
|
||
if self == INFINITY:
|
||
return other
|
||
assert self.__curve == other.__curve
|
||
|
||
p = self.__curve.p()
|
||
#opi = inverse_mod(other.__y, p)
|
||
opi = -other.__y % p
|
||
#print(opi)
|
||
#print(-other.__y % p)
|
||
|
||
if self.__x == other.__x:
|
||
if (self.__y + opi) % self.__curve.p() == 0:
|
||
return INFINITY
|
||
else:
|
||
return self.double
|
||
|
||
l = ((opi - self.__y) * inverse_mod(other.__x - self.__x, p)) % p
|
||
|
||
x3 = (l * l - self.__x - other.__x) % p
|
||
y3 = (l * (self.__x - x3) - self.__y) % p
|
||
|
||
return Point(self.__curve, x3, y3)
|
||
|
||
def __mul__(self, e):
|
||
if self.__order:
|
||
e %= self.__order
|
||
if e == 0 or self == INFINITY:
|
||
return INFINITY
|
||
result, q = INFINITY, self
|
||
while e:
|
||
if e & 1:
|
||
result += q
|
||
e, q = e >> 1, q.double()
|
||
return result
|
||
|
||
"""
|
||
def __mul__(self, other):
|
||
#Multiply a point by an integer.
|
||
|
||
def leftmost_bit( x ):
|
||
assert x > 0
|
||
result = 1
|
||
while result <= x: result = 2 * result
|
||
return result // 2
|
||
|
||
e = other
|
||
if self.__order: e = e % self.__order
|
||
if e == 0: return INFINITY
|
||
if self == INFINITY: return INFINITY
|
||
assert e > 0
|
||
|
||
# From X9.62 D.3.2:
|
||
|
||
e3 = 3 * e
|
||
negative_self = Point( self.__curve, self.__x, -self.__y, self.__order )
|
||
i = leftmost_bit( e3 ) // 2
|
||
result = self
|
||
# print "Multiplying %s by %d (e3 = %d):" % ( self, other, e3 )
|
||
while i > 1:
|
||
result = result.double()
|
||
if ( e3 & i ) != 0 and ( e & i ) == 0: result = result + self
|
||
if ( e3 & i ) == 0 and ( e & i ) != 0: result = result + negative_self
|
||
# print ". . . i = %d, result = %s" % ( i, result )
|
||
i = i // 2
|
||
|
||
return result
|
||
"""
|
||
|
||
def __rmul__(self, other):
|
||
"""Multiply a point by an integer."""
|
||
|
||
return self * other
|
||
|
||
def __str__(self):
|
||
if self == INFINITY:
|
||
return "infinity"
|
||
return "(%d, %d)" % (self.__x, self.__y)
|
||
|
||
def inverse(self):
|
||
return Point(self.__curve, self.__x, -self.__y % self.__curve.p())
|
||
|
||
def double(self):
|
||
"""Return a new point that is twice the old."""
|
||
|
||
if self == INFINITY:
|
||
return INFINITY
|
||
|
||
# X9.62 B.3:
|
||
|
||
p = self.__curve.p()
|
||
a = self.__curve.a()
|
||
|
||
l = ((3 * self.__x * self.__x + a) * inverse_mod(2 * self.__y, p)) % p
|
||
|
||
x3 = (l * l - 2 * self.__x) % p
|
||
y3 = (l * (self.__x - x3) - self.__y) % p
|
||
|
||
return Point(self.__curve, x3, y3)
|
||
|
||
def x(self):
|
||
return self.__x
|
||
|
||
def y(self):
|
||
return self.__y
|
||
|
||
def pair(self):
|
||
return (self.__x, self.__y)
|
||
|
||
def curve(self):
|
||
return self.__curve
|
||
|
||
def order(self):
|
||
return self.__order
|
||
|
||
|
||
# This one point is the Point At Infinity for all purposes:
|
||
INFINITY = Point(None, None, None)
|
||
|
||
|
||
def __main__():
|
||
|
||
class FailedTest(Exception):
|
||
pass
|
||
|
||
def test_add(c, x1, y1, x2, y2, x3, y3):
|
||
"""We expect that on curve c, (x1,y1) + (x2, y2 ) = (x3, y3)."""
|
||
p1 = Point(c, x1, y1)
|
||
p2 = Point(c, x2, y2)
|
||
p3 = p1 + p2
|
||
print("%s + %s = %s" % (p1, p2, p3))
|
||
if p3.x() != x3 or p3.y() != y3:
|
||
raise FailedTest("Failure: should give (%d,%d)." % (x3, y3))
|
||
else:
|
||
print(" Good.")
|
||
|
||
def test_double(c, x1, y1, x3, y3):
|
||
"""We expect that on curve c, 2*(x1,y1) = (x3, y3)."""
|
||
p1 = Point(c, x1, y1)
|
||
p3 = p1.double()
|
||
print("%s doubled = %s" % (p1, p3))
|
||
if p3.x() != x3 or p3.y() != y3:
|
||
raise FailedTest("Failure: should give (%d,%d)." % (x3, y3))
|
||
else:
|
||
print(" Good.")
|
||
|
||
def test_double_infinity(c):
|
||
"""We expect that on curve c, 2*INFINITY = INFINITY."""
|
||
p1 = INFINITY
|
||
p3 = p1.double()
|
||
print("%s doubled = %s" % (p1, p3))
|
||
if p3.x() != INFINITY.x() or p3.y() != INFINITY.y():
|
||
raise FailedTest("Failure: should give (%d,%d)." % (INFINITY.x(), INFINITY.y()))
|
||
else:
|
||
print(" Good.")
|
||
|
||
def test_multiply(c, x1, y1, m, x3, y3):
|
||
"""We expect that on curve c, m*(x1,y1) = (x3,y3)."""
|
||
p1 = Point(c, x1, y1)
|
||
p3 = p1 * m
|
||
print("%s * %d = %s" % (p1, m, p3))
|
||
if p3.x() != x3 or p3.y() != y3:
|
||
raise FailedTest("Failure: should give (%d,%d)." % (x3, y3))
|
||
else:
|
||
print(" Good.")
|
||
|
||
# A few tests from X9.62 B.3:
|
||
|
||
c = CurveFp(23, 1, 1)
|
||
test_add(c, 3, 10, 9, 7, 17, 20)
|
||
test_double(c, 3, 10, 7, 12)
|
||
test_add(c, 3, 10, 3, 10, 7, 12) # (Should just invoke double.)
|
||
test_multiply(c, 3, 10, 2, 7, 12)
|
||
|
||
test_double_infinity(c)
|
||
|
||
# From X9.62 I.1 (p. 96):
|
||
|
||
g = Point(c, 13, 7, 7)
|
||
|
||
check = INFINITY
|
||
for i in range(7 + 1):
|
||
p = (i % 7) * g
|
||
print("%s * %d = %s, expected %s . . ." % (g, i, p, check))
|
||
if p == check:
|
||
print(" Good.")
|
||
else:
|
||
raise FailedTest("Bad.")
|
||
check = check + g
|
||
|
||
# NIST Curve P-192:
|
||
p = 6277101735386680763835789423207666416083908700390324961279
|
||
r = 6277101735386680763835789423176059013767194773182842284081
|
||
#s = 0x3045ae6fc8422f64ed579528d38120eae12196d5L
|
||
c = 0x3099d2bbbfcb2538542dcd5fb078b6ef5f3d6fe2c745de65
|
||
b = 0x64210519e59c80e70fa7e9ab72243049feb8deecc146b9b1
|
||
Gx = 0x188da80eb03090f67cbf20eb43a18800f4ff0afd82ff1012
|
||
Gy = 0x07192b95ffc8da78631011ed6b24cdd573f977a11e794811
|
||
|
||
c192 = CurveFp(p, -3, b)
|
||
p192 = Point(c192, Gx, Gy, r)
|
||
|
||
# Checking against some sample computations presented
|
||
# in X9.62:
|
||
|
||
d = 651056770906015076056810763456358567190100156695615665659
|
||
Q = d * p192
|
||
if Q.x() != 0x62B12D60690CDCF330BABAB6E69763B471F994DD702D16A5:
|
||
raise FailedTest("p192 * d came out wrong.")
|
||
else:
|
||
print("p192 * d came out right.")
|
||
|
||
k = 6140507067065001063065065565667405560006161556565665656654
|
||
R = k * p192
|
||
if R.x() != 0x885052380FF147B734C330C43D39B2C4A89F29B0F749FEAD \
|
||
or R.y() != 0x9CF9FA1CBEFEFB917747A3BB29C072B9289C2547884FD835:
|
||
raise FailedTest("k * p192 came out wrong.")
|
||
else:
|
||
print("k * p192 came out right.")
|
||
|
||
u1 = 2563697409189434185194736134579731015366492496392189760599
|
||
u2 = 6266643813348617967186477710235785849136406323338782220568
|
||
temp = u1 * p192 + u2 * Q
|
||
if temp.x() != 0x885052380FF147B734C330C43D39B2C4A89F29B0F749FEAD \
|
||
or temp.y() != 0x9CF9FA1CBEFEFB917747A3BB29C072B9289C2547884FD835:
|
||
raise FailedTest("u1 * p192 + u2 * Q came out wrong.")
|
||
else:
|
||
print("u1 * p192 + u2 * Q came out right.")
|
||
|
||
|
||
if __name__ == "__main__":
|
||
__main__()
|