#!/usr/bin/env python3 # -*- coding: utf-8 -*- # Copyright (c) 2019-2020 tecnovert # Distributed under the MIT software license, see the accompanying # file LICENSE or http://www.opensource.org/licenses/mit-license.php. import secrets import hashlib import unittest import basicswap.contrib.ed25519_fast as edf import basicswap.ed25519_fast_util as edu from coincurve.ed25519 import ed25519_get_pubkey from coincurve.ecdsaotves import ( ecdsaotves_enc_sign, ecdsaotves_enc_verify, ecdsaotves_dec_sig, ecdsaotves_rec_enc_key) from coincurve.keys import ( PrivateKey) from basicswap.ecc_util import i2b from basicswap.interface_btc import BTCInterface from basicswap.interface_xmr import XMRInterface from basicswap.util import ( SerialiseNum, DeserialiseNum, make_int, format_amount, validate_amount) from basicswap.types import ( SEQUENCE_LOCK_BLOCKS, SEQUENCE_LOCK_TIME) class Test(unittest.TestCase): def test_serialise_num(self): def test_case(v, nb=None): b = SerialiseNum(v) if nb is not None: assert(len(b) == nb) assert(v == DeserialiseNum(b)) test_case(0, 1) test_case(1, 1) test_case(16, 1) test_case(-1, 2) test_case(17, 2) test_case(500) test_case(-500) test_case(4194642) def test_sequence(self): coin_settings = {'rpcport': 0, 'rpcauth': 'none', 'blocks_confirmed': 1, 'conf_target': 1} ci = BTCInterface(coin_settings, 'regtest') time_val = 48 * 60 * 60 encoded = ci.getExpectedSequence(SEQUENCE_LOCK_TIME, time_val) decoded = ci.decodeSequence(encoded) assert(decoded >= time_val) assert(decoded <= time_val + 512) time_val = 24 * 60 encoded = ci.getExpectedSequence(SEQUENCE_LOCK_TIME, time_val) decoded = ci.decodeSequence(encoded) assert(decoded >= time_val) assert(decoded <= time_val + 512) blocks_val = 123 encoded = ci.getExpectedSequence(SEQUENCE_LOCK_BLOCKS, blocks_val) decoded = ci.decodeSequence(encoded) assert(decoded == blocks_val) def test_make_int(self): def test_case(vs, vf, expect_int): i = make_int(vs) assert(i == expect_int and isinstance(i, int)) i = make_int(vf) assert(i == expect_int and isinstance(i, int)) vs_out = format_amount(i, 8) # Strip for i in range(7): if vs_out[-1] == '0': vs_out = vs_out[:-1] if '.' in vs: assert(vs_out == vs) else: assert(vs_out[:-2] == vs) test_case('0', 0, 0) test_case('1', 1, 100000000) test_case('10', 10, 1000000000) test_case('0.00899999', 0.00899999, 899999) test_case('899999.0', 899999.0, 89999900000000) test_case('899999.00899999', 899999.00899999, 89999900899999) test_case('0.0', 0.0, 0) test_case('1.0', 1.0, 100000000) test_case('1.1', 1.1, 110000000) test_case('1.2', 1.2, 120000000) test_case('0.00899991', 0.00899991, 899991) test_case('0.0089999', 0.0089999, 899990) test_case('0.0089991', 0.0089991, 899910) test_case('0.123', 0.123, 12300000) test_case('123000.000123', 123000.000123, 12300000012300) try: make_int('0.123456789') assert(False) except Exception as e: assert(str(e) == 'Mantissa too long') validate_amount('0.12345678') # floor assert(make_int('0.123456789', r=-1) == 12345678) # Round up assert(make_int('0.123456789', r=1) == 12345679) def test_make_int12(self): def test_case(vs, vf, expect_int): i = make_int(vs, 12) assert(i == expect_int and isinstance(i, int)) i = make_int(vf, 12) assert(i == expect_int and isinstance(i, int)) vs_out = format_amount(i, 12) # Strip for i in range(7): if vs_out[-1] == '0': vs_out = vs_out[:-1] if '.' in vs: assert(vs_out == vs) else: assert(vs_out[:-2] == vs) test_case('0.123456789', 0.123456789, 123456789000) test_case('0.123456789123', 0.123456789123, 123456789123) try: make_int('0.1234567891234', 12) assert(False) except Exception as e: assert(str(e) == 'Mantissa too long') validate_amount('0.123456789123', 12) try: validate_amount('0.1234567891234', 12) assert(False) except Exception as e: assert('Too many decimal places' in str(e)) try: validate_amount(0.1234567891234, 12) assert(False) except Exception as e: assert('Too many decimal places' in str(e)) def test_ed25519(self): privkey = edu.get_secret() pubkey = edu.encodepoint(edf.scalarmult_B(privkey)) privkey_bytes = i2b(privkey) pubkey_test = ed25519_get_pubkey(privkey_bytes) assert(pubkey == pubkey_test) def test_ecdsa_otves(self): coin_settings = {'rpcport': 0, 'rpcauth': 'none', 'blocks_confirmed': 1, 'conf_target': 1} ci = BTCInterface(coin_settings, 'regtest') vk_sign = i2b(ci.getNewSecretKey()) vk_encrypt = i2b(ci.getNewSecretKey()) pk_sign = ci.getPubkey(vk_sign) pk_encrypt = ci.getPubkey(vk_encrypt) sign_hash = secrets.token_bytes(32) cipher_text = ecdsaotves_enc_sign(vk_sign, pk_encrypt, sign_hash) assert(ecdsaotves_enc_verify(pk_sign, pk_encrypt, sign_hash, cipher_text)) sig = ecdsaotves_dec_sig(vk_encrypt, cipher_text) assert(ci.verifySig(pk_sign, sign_hash, sig)) recovered_key = ecdsaotves_rec_enc_key(pk_encrypt, cipher_text, sig) assert(vk_encrypt == recovered_key) def test_sign(self): coin_settings = {'rpcport': 0, 'rpcauth': 'none', 'blocks_confirmed': 1, 'conf_target': 1} ci = BTCInterface(coin_settings, 'regtest') vk = i2b(ci.getNewSecretKey()) pk = ci.getPubkey(vk) message = 'test signing message' message_hash = hashlib.sha256(bytes(message, 'utf-8')).digest() eck = PrivateKey(vk) sig = eck.sign(message.encode('utf-8')) ci.verifySig(pk, message_hash, sig) def test_sign_compact(self): coin_settings = {'rpcport': 0, 'rpcauth': 'none', 'blocks_confirmed': 1, 'conf_target': 1} ci = BTCInterface(coin_settings, 'regtest') vk = i2b(ci.getNewSecretKey()) pk = ci.getPubkey(vk) sig = ci.signCompact(vk, 'test signing message') assert(len(sig) == 64) ci.verifyCompact(pk, 'test signing message', sig) def test_dleag(self): coin_settings = {'rpcport': 0, 'walletrpcport': 0, 'walletrpcauth': 'none', 'blocks_confirmed': 1, 'conf_target': 1} ci = XMRInterface(coin_settings, 'regtest') key = i2b(ci.getNewSecretKey()) proof = ci.proveDLEAG(key) assert(ci.verifyDLEAG(proof)) def test_rate(self): scale_from = 8 scale_to = 12 amount_from = 100 * (10 ** scale_from) rate = 0.1 * (10 ** scale_to) amount_to = int((amount_from * rate) // (10 ** scale_from)) assert('100.00000000' == format_amount(amount_from, scale_from)) assert('10.000000000000' == format_amount(amount_to, scale_to)) rate_check = int((amount_to / amount_from) * (10 ** scale_from)) assert(rate == rate_check) scale_from = 12 scale_to = 8 amount_from = 1 * (10 ** scale_from) rate = 12 * (10 ** scale_to) amount_to = int((amount_from * rate) // (10 ** scale_from)) assert('1.000000000000' == format_amount(amount_from, scale_from)) assert('12.00000000' == format_amount(amount_to, scale_to)) rate_check = int((amount_to / amount_from) * (10 ** scale_from)) assert(rate == rate_check) if __name__ == '__main__': unittest.main()