# Copyright (c) 2019 Pieter Wuille # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test-only secp256k1 elliptic curve implementation WARNING: This code is slow, uses bad randomness, does not properly protect keys, and is trivially vulnerable to side channel attacks. Do not use for anything but tests.""" import random def modinv(a, n): """Compute the modular inverse of a modulo n See https://en.wikipedia.org/wiki/Extended_Euclidean_algorithm#Modular_integers. """ t1, t2 = 0, 1 r1, r2 = n, a while r2 != 0: q = r1 // r2 t1, t2 = t2, t1 - q * t2 r1, r2 = r2, r1 - q * r2 if r1 > 1: return None if t1 < 0: t1 += n return t1 def jacobi_symbol(n, k): """Compute the Jacobi symbol of n modulo k See http://en.wikipedia.org/wiki/Jacobi_symbol For our application k is always prime, so this is the same as the Legendre symbol.""" assert k > 0 and k & 1, "jacobi symbol is only defined for positive odd k" n %= k t = 0 while n != 0: while n & 1 == 0: n >>= 1 r = k & 7 t ^= (r == 3 or r == 5) n, k = k, n t ^= (n & k & 3 == 3) n = n % k if k == 1: return -1 if t else 1 return 0 def modsqrt(a, p): """Compute the square root of a modulo p when p % 4 = 3. The Tonelli-Shanks algorithm can be used. See https://en.wikipedia.org/wiki/Tonelli-Shanks_algorithm Limiting this function to only work for p % 4 = 3 means we don't need to iterate through the loop. The highest n such that p - 1 = 2^n Q with Q odd is n = 1. Therefore Q = (p-1)/2 and sqrt = a^((Q+1)/2) = a^((p+1)/4) secp256k1's is defined over field of size 2**256 - 2**32 - 977, which is 3 mod 4. """ if p % 4 != 3: raise NotImplementedError("modsqrt only implemented for p % 4 = 3") sqrt = pow(a, (p + 1)//4, p) if pow(sqrt, 2, p) == a % p: return sqrt return None class EllipticCurve: def __init__(self, p, a, b): """Initialize elliptic curve y^2 = x^3 + a*x + b over GF(p).""" self.p = p self.a = a % p self.b = b % p def affine(self, p1): """Convert a Jacobian point tuple p1 to affine form, or None if at infinity. An affine point is represented as the Jacobian (x, y, 1)""" x1, y1, z1 = p1 if z1 == 0: return None inv = modinv(z1, self.p) inv_2 = (inv**2) % self.p inv_3 = (inv_2 * inv) % self.p return ((inv_2 * x1) % self.p, (inv_3 * y1) % self.p, 1) def negate(self, p1): """Negate a Jacobian point tuple p1.""" x1, y1, z1 = p1 return (x1, (self.p - y1) % self.p, z1) def on_curve(self, p1): """Determine whether a Jacobian tuple p is on the curve (and not infinity)""" x1, y1, z1 = p1 z2 = pow(z1, 2, self.p) z4 = pow(z2, 2, self.p) return z1 != 0 and (pow(x1, 3, self.p) + self.a * x1 * z4 + self.b * z2 * z4 - pow(y1, 2, self.p)) % self.p == 0 def is_x_coord(self, x): """Test whether x is a valid X coordinate on the curve.""" x_3 = pow(x, 3, self.p) return jacobi_symbol(x_3 + self.a * x + self.b, self.p) != -1 def lift_x(self, x): """Given an X coordinate on the curve, return a corresponding affine point.""" x_3 = pow(x, 3, self.p) v = x_3 + self.a * x + self.b y = modsqrt(v, self.p) if y is None: return None return (x, y, 1) def double(self, p1): """Double a Jacobian tuple p1 See https://en.wikibooks.org/wiki/Cryptography/Prime_Curve/Jacobian_Coordinates - Point Doubling""" x1, y1, z1 = p1 if z1 == 0: return (0, 1, 0) y1_2 = (y1**2) % self.p y1_4 = (y1_2**2) % self.p x1_2 = (x1**2) % self.p s = (4*x1*y1_2) % self.p m = 3*x1_2 if self.a: m += self.a * pow(z1, 4, self.p) m = m % self.p x2 = (m**2 - 2*s) % self.p y2 = (m*(s - x2) - 8*y1_4) % self.p z2 = (2*y1*z1) % self.p return (x2, y2, z2) def add_mixed(self, p1, p2): """Add a Jacobian tuple p1 and an affine tuple p2 See https://en.wikibooks.org/wiki/Cryptography/Prime_Curve/Jacobian_Coordinates - Point Addition (with affine point)""" x1, y1, z1 = p1 x2, y2, z2 = p2 assert(z2 == 1) # Adding to the point at infinity is a no-op if z1 == 0: return p2 z1_2 = (z1**2) % self.p z1_3 = (z1_2 * z1) % self.p u2 = (x2 * z1_2) % self.p s2 = (y2 * z1_3) % self.p if x1 == u2: if (y1 != s2): # p1 and p2 are inverses. Return the point at infinity. return (0, 1, 0) # p1 == p2. The formulas below fail when the two points are equal. return self.double(p1) h = u2 - x1 r = s2 - y1 h_2 = (h**2) % self.p h_3 = (h_2 * h) % self.p u1_h_2 = (x1 * h_2) % self.p x3 = (r**2 - h_3 - 2*u1_h_2) % self.p y3 = (r*(u1_h_2 - x3) - y1*h_3) % self.p z3 = (h*z1) % self.p return (x3, y3, z3) def add(self, p1, p2): """Add two Jacobian tuples p1 and p2 See https://en.wikibooks.org/wiki/Cryptography/Prime_Curve/Jacobian_Coordinates - Point Addition""" x1, y1, z1 = p1 x2, y2, z2 = p2 # Adding the point at infinity is a no-op if z1 == 0: return p2 if z2 == 0: return p1 # Adding an Affine to a Jacobian is more efficient since we save field multiplications and squarings when z = 1 if z1 == 1: return self.add_mixed(p2, p1) if z2 == 1: return self.add_mixed(p1, p2) z1_2 = (z1**2) % self.p z1_3 = (z1_2 * z1) % self.p z2_2 = (z2**2) % self.p z2_3 = (z2_2 * z2) % self.p u1 = (x1 * z2_2) % self.p u2 = (x2 * z1_2) % self.p s1 = (y1 * z2_3) % self.p s2 = (y2 * z1_3) % self.p if u1 == u2: if (s1 != s2): # p1 and p2 are inverses. Return the point at infinity. return (0, 1, 0) # p1 == p2. The formulas below fail when the two points are equal. return self.double(p1) h = u2 - u1 r = s2 - s1 h_2 = (h**2) % self.p h_3 = (h_2 * h) % self.p u1_h_2 = (u1 * h_2) % self.p x3 = (r**2 - h_3 - 2*u1_h_2) % self.p y3 = (r*(u1_h_2 - x3) - s1*h_3) % self.p z3 = (h*z1*z2) % self.p return (x3, y3, z3) def mul(self, ps): """Compute a (multi) point multiplication ps is a list of (Jacobian tuple, scalar) pairs. """ r = (0, 1, 0) for i in range(255, -1, -1): r = self.double(r) for (p, n) in ps: if ((n >> i) & 1): r = self.add(r, p) return r SECP256K1 = EllipticCurve(2**256 - 2**32 - 977, 0, 7) SECP256K1_G = (0x79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798, 0x483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8, 1) SECP256K1_ORDER = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 SECP256K1_ORDER_HALF = SECP256K1_ORDER // 2 class ECPubKey(): """A secp256k1 public key""" def __init__(self): """Construct an uninitialized public key""" self.valid = False def set_int(self, x, y): p = (x, y, 1) self.valid = SECP256K1.on_curve(p) if self.valid: self.p = p self.compressed = False def set(self, data): """Construct a public key from a serialization in compressed or uncompressed format""" if (len(data) == 65 and data[0] == 0x04): p = (int.from_bytes(data[1:33], 'big'), int.from_bytes(data[33:65], 'big'), 1) self.valid = SECP256K1.on_curve(p) if self.valid: self.p = p self.compressed = False elif (len(data) == 33 and (data[0] == 0x02 or data[0] == 0x03)): x = int.from_bytes(data[1:33], 'big') if SECP256K1.is_x_coord(x): p = SECP256K1.lift_x(x) # if the oddness of the y co-ord isn't correct, find the other # valid y if (p[1] & 1) != (data[0] & 1): p = SECP256K1.negate(p) self.p = p self.valid = True self.compressed = True else: self.valid = False else: self.valid = False @property def is_compressed(self): return self.compressed @property def is_valid(self): return self.valid def get_bytes(self): assert(self.valid) p = SECP256K1.affine(self.p) if p is None: return None if self.compressed: return bytes([0x02 + (p[1] & 1)]) + p[0].to_bytes(32, 'big') else: return bytes([0x04]) + p[0].to_bytes(32, 'big') + p[1].to_bytes(32, 'big') def verify_ecdsa(self, sig, msg, low_s=True): """Verify a strictly DER-encoded ECDSA signature against this pubkey. See https://en.wikipedia.org/wiki/Elliptic_Curve_Digital_Signature_Algorithm for the ECDSA verifier algorithm""" assert(self.valid) # Extract r and s from the DER formatted signature. Return false for # any DER encoding errors. if (sig[1] + 2 != len(sig)): return False if (len(sig) < 4): return False if (sig[0] != 0x30): return False if (sig[2] != 0x02): return False rlen = sig[3] if (len(sig) < 6 + rlen): return False if rlen < 1 or rlen > 33: return False if sig[4] >= 0x80: return False if (rlen > 1 and (sig[4] == 0) and not (sig[5] & 0x80)): return False r = int.from_bytes(sig[4:4+rlen], 'big') if (sig[4+rlen] != 0x02): return False slen = sig[5+rlen] if slen < 1 or slen > 33: return False if (len(sig) != 6 + rlen + slen): return False if sig[6+rlen] >= 0x80: return False if (slen > 1 and (sig[6+rlen] == 0) and not (sig[7+rlen] & 0x80)): return False s = int.from_bytes(sig[6+rlen:6+rlen+slen], 'big') # Verify that r and s are within the group order if r < 1 or s < 1 or r >= SECP256K1_ORDER or s >= SECP256K1_ORDER: return False if low_s and s >= SECP256K1_ORDER_HALF: return False z = int.from_bytes(msg, 'big') # Run verifier algorithm on r, s w = modinv(s, SECP256K1_ORDER) u1 = z*w % SECP256K1_ORDER u2 = r*w % SECP256K1_ORDER R = SECP256K1.affine(SECP256K1.mul([(SECP256K1_G, u1), (self.p, u2)])) if R is None or R[0] != r: return False return True class ECKey(): """A secp256k1 private key""" def __init__(self): self.valid = False def set(self, secret, compressed): """Construct a private key object with given 32-byte secret and compressed flag.""" assert(len(secret) == 32) secret = int.from_bytes(secret, 'big') self.valid = (secret > 0 and secret < SECP256K1_ORDER) if self.valid: self.secret = secret self.compressed = compressed def generate(self, compressed=True): """Generate a random private key (compressed or uncompressed).""" self.set(random.randrange(1, SECP256K1_ORDER).to_bytes(32, 'big'), compressed) def get_bytes(self): """Retrieve the 32-byte representation of this key.""" assert(self.valid) return self.secret.to_bytes(32, 'big') @property def is_valid(self): return self.valid @property def is_compressed(self): return self.compressed def get_pubkey(self): """Compute an ECPubKey object for this secret key.""" assert(self.valid) ret = ECPubKey() p = SECP256K1.mul([(SECP256K1_G, self.secret)]) ret.p = p ret.valid = True ret.compressed = self.compressed return ret def sign_ecdsa(self, msg, low_s=True): """Construct a DER-encoded ECDSA signature with this key. See https://en.wikipedia.org/wiki/Elliptic_Curve_Digital_Signature_Algorithm for the ECDSA signer algorithm.""" assert(self.valid) z = int.from_bytes(msg, 'big') # Note: no RFC6979, but a simple random nonce (some tests rely on distinct transactions for the same operation) k = random.randrange(1, SECP256K1_ORDER) R = SECP256K1.affine(SECP256K1.mul([(SECP256K1_G, k)])) r = R[0] % SECP256K1_ORDER s = (modinv(k, SECP256K1_ORDER) * (z + self.secret * r)) % SECP256K1_ORDER if low_s and s > SECP256K1_ORDER_HALF: s = SECP256K1_ORDER - s # Represent in DER format. The byte representations of r and s have # length rounded up (255 bits becomes 32 bytes and 256 bits becomes 33 # bytes). rb = r.to_bytes((r.bit_length() + 8) // 8, 'big') sb = s.to_bytes((s.bit_length() + 8) // 8, 'big') return b'\x30' + bytes([4 + len(rb) + len(sb), 2, len(rb)]) + rb + bytes([2, len(sb)]) + sb