357 lines
8.4 KiB
Python
357 lines
8.4 KiB
Python
|
# ed25519.py - Optimized version of the reference implementation of Ed25519
|
|||
|
#
|
|||
|
# Written in 2011? by Daniel J. Bernstein <djb@cr.yp.to>
|
|||
|
# 2013 by Donald Stufft <donald@stufft.io>
|
|||
|
# 2013 by Alex Gaynor <alex.gaynor@gmail.com>
|
|||
|
# 2013 by Greg Price <price@mit.edu>
|
|||
|
#
|
|||
|
# To the extent possible under law, the author(s) have dedicated all copyright
|
|||
|
# and related and neighboring rights to this software to the public domain
|
|||
|
# worldwide. This software is distributed without any warranty.
|
|||
|
#
|
|||
|
# You should have received a copy of the CC0 Public Domain Dedication along
|
|||
|
# with this software. If not, see
|
|||
|
# <http://creativecommons.org/publicdomain/zero/1.0/>.
|
|||
|
|
|||
|
"""
|
|||
|
NB: This code is not safe for use with secret keys or secret data.
|
|||
|
The only safe use of this code is for verifying signatures on public messages.
|
|||
|
|
|||
|
Functions for computing the public key of a secret key and for signing
|
|||
|
a message are included, namely publickey_unsafe and signature_unsafe,
|
|||
|
for testing purposes only.
|
|||
|
|
|||
|
The root of the problem is that Python's long-integer arithmetic is
|
|||
|
not designed for use in cryptography. Specifically, it may take more
|
|||
|
or less time to execute an operation depending on the values of the
|
|||
|
inputs, and its memory access patterns may also depend on the inputs.
|
|||
|
This opens it to timing and cache side-channel attacks which can
|
|||
|
disclose data to an attacker. We rely on Python's long-integer
|
|||
|
arithmetic, so we cannot handle secrets without risking their disclosure.
|
|||
|
"""
|
|||
|
|
|||
|
import hashlib
|
|||
|
import operator
|
|||
|
import sys
|
|||
|
|
|||
|
|
|||
|
__version__ = "1.0.dev0"
|
|||
|
|
|||
|
|
|||
|
# Useful for very coarse version differentiation.
|
|||
|
PY3 = sys.version_info[0] == 3
|
|||
|
|
|||
|
if PY3:
|
|||
|
indexbytes = operator.getitem
|
|||
|
intlist2bytes = bytes
|
|||
|
int2byte = operator.methodcaller("to_bytes", 1, "big")
|
|||
|
else:
|
|||
|
int2byte = chr
|
|||
|
range = xrange
|
|||
|
|
|||
|
def indexbytes(buf, i):
|
|||
|
return ord(buf[i])
|
|||
|
|
|||
|
def intlist2bytes(l):
|
|||
|
return b"".join(chr(c) for c in l)
|
|||
|
|
|||
|
|
|||
|
b = 256
|
|||
|
q = 2 ** 255 - 19
|
|||
|
l = 2 ** 252 + 27742317777372353535851937790883648493
|
|||
|
|
|||
|
|
|||
|
def H(m):
|
|||
|
return hashlib.sha512(m).digest()
|
|||
|
|
|||
|
|
|||
|
def pow2(x, p):
|
|||
|
"""== pow(x, 2**p, q)"""
|
|||
|
while p > 0:
|
|||
|
x = x * x % q
|
|||
|
p -= 1
|
|||
|
return x
|
|||
|
|
|||
|
|
|||
|
def inv(z):
|
|||
|
"""$= z^{-1} \mod q$, for z != 0"""
|
|||
|
# Adapted from curve25519_athlon.c in djb's Curve25519.
|
|||
|
z2 = z * z % q # 2
|
|||
|
z9 = pow2(z2, 2) * z % q # 9
|
|||
|
z11 = z9 * z2 % q # 11
|
|||
|
z2_5_0 = (z11 * z11) % q * z9 % q # 31 == 2^5 - 2^0
|
|||
|
z2_10_0 = pow2(z2_5_0, 5) * z2_5_0 % q # 2^10 - 2^0
|
|||
|
z2_20_0 = pow2(z2_10_0, 10) * z2_10_0 % q # ...
|
|||
|
z2_40_0 = pow2(z2_20_0, 20) * z2_20_0 % q
|
|||
|
z2_50_0 = pow2(z2_40_0, 10) * z2_10_0 % q
|
|||
|
z2_100_0 = pow2(z2_50_0, 50) * z2_50_0 % q
|
|||
|
z2_200_0 = pow2(z2_100_0, 100) * z2_100_0 % q
|
|||
|
z2_250_0 = pow2(z2_200_0, 50) * z2_50_0 % q # 2^250 - 2^0
|
|||
|
return pow2(z2_250_0, 5) * z11 % q # 2^255 - 2^5 + 11 = q - 2
|
|||
|
|
|||
|
|
|||
|
d = -121665 * inv(121666) % q
|
|||
|
I = pow(2, (q - 1) // 4, q)
|
|||
|
|
|||
|
|
|||
|
def xrecover(y, sign=0):
|
|||
|
xx = (y * y - 1) * inv(d * y * y + 1)
|
|||
|
x = pow(xx, (q + 3) // 8, q)
|
|||
|
|
|||
|
if (x * x - xx) % q != 0:
|
|||
|
x = (x * I) % q
|
|||
|
|
|||
|
if x % 2 != sign:
|
|||
|
x = q-x
|
|||
|
|
|||
|
return x
|
|||
|
|
|||
|
|
|||
|
By = 4 * inv(5)
|
|||
|
Bx = xrecover(By)
|
|||
|
B = (Bx % q, By % q, 1, (Bx * By) % q)
|
|||
|
ident = (0, 1, 1, 0)
|
|||
|
|
|||
|
|
|||
|
def edwards_add(P, Q):
|
|||
|
# This is formula sequence 'addition-add-2008-hwcd-3' from
|
|||
|
# http://www.hyperelliptic.org/EFD/g1p/auto-twisted-extended-1.html
|
|||
|
(x1, y1, z1, t1) = P
|
|||
|
(x2, y2, z2, t2) = Q
|
|||
|
|
|||
|
a = (y1-x1)*(y2-x2) % q
|
|||
|
b = (y1+x1)*(y2+x2) % q
|
|||
|
c = t1*2*d*t2 % q
|
|||
|
dd = z1*2*z2 % q
|
|||
|
e = b - a
|
|||
|
f = dd - c
|
|||
|
g = dd + c
|
|||
|
h = b + a
|
|||
|
x3 = e*f
|
|||
|
y3 = g*h
|
|||
|
t3 = e*h
|
|||
|
z3 = f*g
|
|||
|
|
|||
|
return (x3 % q, y3 % q, z3 % q, t3 % q)
|
|||
|
|
|||
|
|
|||
|
def edwards_sub(P, Q):
|
|||
|
# This is formula sequence 'addition-add-2008-hwcd-3' from
|
|||
|
# http://www.hyperelliptic.org/EFD/g1p/auto-twisted-extended-1.html
|
|||
|
(x1, y1, z1, t1) = P
|
|||
|
(x2, y2, z2, t2) = Q
|
|||
|
|
|||
|
# https://eprint.iacr.org/2008/522.pdf
|
|||
|
# The negative of (X:Y:Z)is (−X:Y:Z)
|
|||
|
#x2 = q-x2
|
|||
|
"""
|
|||
|
doesn't work
|
|||
|
x2 = q-x2
|
|||
|
t2 = (x2*y2) % q
|
|||
|
"""
|
|||
|
|
|||
|
zi = inv(z2)
|
|||
|
x2 = q-((x2 * zi) % q)
|
|||
|
y2 = (y2 * zi) % q
|
|||
|
z2 = 1
|
|||
|
t2 = (x2*y2) % q
|
|||
|
|
|||
|
|
|||
|
a = (y1-x1)*(y2-x2) % q
|
|||
|
b = (y1+x1)*(y2+x2) % q
|
|||
|
c = t1*2*d*t2 % q
|
|||
|
dd = z1*2*z2 % q
|
|||
|
e = b - a
|
|||
|
f = dd - c
|
|||
|
g = dd + c
|
|||
|
h = b + a
|
|||
|
x3 = e*f
|
|||
|
y3 = g*h
|
|||
|
t3 = e*h
|
|||
|
z3 = f*g
|
|||
|
|
|||
|
return (x3 % q, y3 % q, z3 % q, t3 % q)
|
|||
|
|
|||
|
|
|||
|
def edwards_double(P):
|
|||
|
# This is formula sequence 'dbl-2008-hwcd' from
|
|||
|
# http://www.hyperelliptic.org/EFD/g1p/auto-twisted-extended-1.html
|
|||
|
(x1, y1, z1, t1) = P
|
|||
|
|
|||
|
a = x1*x1 % q
|
|||
|
b = y1*y1 % q
|
|||
|
c = 2*z1*z1 % q
|
|||
|
# dd = -a
|
|||
|
e = ((x1+y1)*(x1+y1) - a - b) % q
|
|||
|
g = -a + b # dd + b
|
|||
|
f = g - c
|
|||
|
h = -a - b # dd - b
|
|||
|
x3 = e*f
|
|||
|
y3 = g*h
|
|||
|
t3 = e*h
|
|||
|
z3 = f*g
|
|||
|
|
|||
|
return (x3 % q, y3 % q, z3 % q, t3 % q)
|
|||
|
|
|||
|
|
|||
|
def scalarmult(P, e):
|
|||
|
if e == 0:
|
|||
|
return ident
|
|||
|
Q = scalarmult(P, e // 2)
|
|||
|
Q = edwards_double(Q)
|
|||
|
if e & 1:
|
|||
|
Q = edwards_add(Q, P)
|
|||
|
return Q
|
|||
|
|
|||
|
|
|||
|
# Bpow[i] == scalarmult(B, 2**i)
|
|||
|
Bpow = []
|
|||
|
|
|||
|
|
|||
|
def make_Bpow():
|
|||
|
P = B
|
|||
|
for i in range(253):
|
|||
|
Bpow.append(P)
|
|||
|
P = edwards_double(P)
|
|||
|
make_Bpow()
|
|||
|
|
|||
|
|
|||
|
def scalarmult_B(e):
|
|||
|
"""
|
|||
|
Implements scalarmult(B, e) more efficiently.
|
|||
|
"""
|
|||
|
# scalarmult(B, l) is the identity
|
|||
|
e = e % l
|
|||
|
P = ident
|
|||
|
for i in range(253):
|
|||
|
if e & 1:
|
|||
|
P = edwards_add(P, Bpow[i])
|
|||
|
e = e // 2
|
|||
|
assert e == 0, e
|
|||
|
return P
|
|||
|
|
|||
|
|
|||
|
def encodeint(y):
|
|||
|
bits = [(y >> i) & 1 for i in range(b)]
|
|||
|
return b''.join([
|
|||
|
int2byte(sum([bits[i * 8 + j] << j for j in range(8)]))
|
|||
|
for i in range(b//8)
|
|||
|
])
|
|||
|
|
|||
|
|
|||
|
def encodepoint(P):
|
|||
|
(x, y, z, t) = P
|
|||
|
zi = inv(z)
|
|||
|
x = (x * zi) % q
|
|||
|
y = (y * zi) % q
|
|||
|
bits = [(y >> i) & 1 for i in range(b - 1)] + [x & 1]
|
|||
|
return b''.join([
|
|||
|
int2byte(sum([bits[i * 8 + j] << j for j in range(8)]))
|
|||
|
for i in range(b // 8)
|
|||
|
])
|
|||
|
|
|||
|
|
|||
|
def bit(h, i):
|
|||
|
return (indexbytes(h, i // 8) >> (i % 8)) & 1
|
|||
|
|
|||
|
|
|||
|
def publickey_unsafe(sk):
|
|||
|
"""
|
|||
|
Not safe to use with secret keys or secret data.
|
|||
|
|
|||
|
See module docstring. This function should be used for testing only.
|
|||
|
"""
|
|||
|
h = H(sk)
|
|||
|
a = 2 ** (b - 2) + sum(2 ** i * bit(h, i) for i in range(3, b - 2))
|
|||
|
A = scalarmult_B(a)
|
|||
|
return encodepoint(A)
|
|||
|
|
|||
|
|
|||
|
def Hint(m):
|
|||
|
h = H(m)
|
|||
|
return sum(2 ** i * bit(h, i) for i in range(2 * b))
|
|||
|
|
|||
|
|
|||
|
def signature_unsafe(m, sk, pk):
|
|||
|
"""
|
|||
|
Not safe to use with secret keys or secret data.
|
|||
|
|
|||
|
See module docstring. This function should be used for testing only.
|
|||
|
"""
|
|||
|
h = H(sk)
|
|||
|
a = 2 ** (b - 2) + sum(2 ** i * bit(h, i) for i in range(3, b - 2))
|
|||
|
r = Hint(
|
|||
|
intlist2bytes([indexbytes(h, j) for j in range(b // 8, b // 4)]) + m
|
|||
|
)
|
|||
|
R = scalarmult_B(r)
|
|||
|
S = (r + Hint(encodepoint(R) + pk + m) * a) % l
|
|||
|
return encodepoint(R) + encodeint(S)
|
|||
|
|
|||
|
|
|||
|
def isoncurve(P):
|
|||
|
(x, y, z, t) = P
|
|||
|
return (z % q != 0 and
|
|||
|
x*y % q == z*t % q and
|
|||
|
(y*y - x*x - z*z - d*t*t) % q == 0)
|
|||
|
|
|||
|
|
|||
|
def decodeint(s):
|
|||
|
return sum(2 ** i * bit(s, i) for i in range(0, b))
|
|||
|
|
|||
|
|
|||
|
def decodepoint(s):
|
|||
|
y = sum(2 ** i * bit(s, i) for i in range(0, b - 1))
|
|||
|
x = xrecover(y)
|
|||
|
if x & 1 != bit(s, b-1):
|
|||
|
x = q - x
|
|||
|
P = (x, y, 1, (x*y) % q)
|
|||
|
if not isoncurve(P):
|
|||
|
raise ValueError("decoding point that is not on curve")
|
|||
|
return P
|
|||
|
|
|||
|
|
|||
|
class SignatureMismatch(Exception):
|
|||
|
pass
|
|||
|
|
|||
|
|
|||
|
def checkvalid(s, m, pk):
|
|||
|
"""
|
|||
|
Not safe to use when any argument is secret.
|
|||
|
|
|||
|
See module docstring. This function should be used only for
|
|||
|
verifying public signatures of public messages.
|
|||
|
"""
|
|||
|
if len(s) != b // 4:
|
|||
|
raise ValueError("signature length is wrong")
|
|||
|
|
|||
|
if len(pk) != b // 8:
|
|||
|
raise ValueError("public-key length is wrong")
|
|||
|
|
|||
|
R = decodepoint(s[:b // 8])
|
|||
|
A = decodepoint(pk)
|
|||
|
S = decodeint(s[b // 8:b // 4])
|
|||
|
h = Hint(encodepoint(R) + pk + m)
|
|||
|
|
|||
|
(x1, y1, z1, t1) = P = scalarmult_B(S)
|
|||
|
(x2, y2, z2, t2) = Q = edwards_add(R, scalarmult(A, h))
|
|||
|
|
|||
|
if (not isoncurve(P) or not isoncurve(Q) or
|
|||
|
(x1*z2 - x2*z1) % q != 0 or (y1*z2 - y2*z1) % q != 0):
|
|||
|
raise SignatureMismatch("signature does not pass verification")
|
|||
|
|
|||
|
|
|||
|
def is_identity(P):
|
|||
|
return True if P[0] == 0 else False
|
|||
|
|
|||
|
|
|||
|
def edwards_negated(P):
|
|||
|
(x, y, z, t) = P
|
|||
|
|
|||
|
zi = inv(z)
|
|||
|
x = q - ((x * zi) % q)
|
|||
|
y = (y * zi) % q
|
|||
|
z = 1
|
|||
|
t = (x * y) % q
|
|||
|
|
|||
|
return (x, y, z, t)
|