package Anvil::Tools::Convert; # # This module contains methods used to convert data between types # use strict; use warnings; use Scalar::Util qw(weaken isweak); use Math::BigInt; our $VERSION = "3.0.0"; my $THIS_FILE = "Convert.pm"; ### Methods; # add_commas # bytes_to_human_readable # cidr # hostname_to_ip # human_readable_to_bytes # round =pod =encoding utf8 =head1 NAME Anvil::Tools::Convert Provides all methods related to converting data. =head1 SYNOPSIS use Anvil::Tools; # Get a common object handle on all Anvil::Tools modules. my $anvil = Anvil::Tools->new(); # Access to methods using '$anvil->Convert->X'. # # Example using 'cidr()'; my $subnet = $anvil->Convert->codr({cidr => "24"}); =head1 METHODS Methods in this module; =cut sub new { my $class = shift; my $self = {}; bless $self, $class; return ($self); } # Get a handle on the Anvil::Tools object. I know that technically that is a sibling module, but it makes more # sense in this case to think of it as a parent. sub parent { my $self = shift; my $parent = shift; $self->{HANDLE}{TOOLS} = $parent if $parent; # Defend against memory leads. See Scalar::Util'. if (not isweak($self->{HANDLE}{TOOLS})) { weaken($self->{HANDLE}{TOOLS});; } return ($self->{HANDLE}{TOOLS}); } ############################################################################################################# # Public methods # ############################################################################################################# =head2 add_commas This takes an integer and inserts commas to make it more readable by people. If the input string isn't a string of digits, it is simply returned as-is. my $string = $anvil->Convert->add_commas({number => 123456789}); # string = 123,456,789 Parameters; =head3 number (required) This is the number to add commas to. =cut sub add_commas { my $self = shift; my $parameter = shift; my $anvil = $self->parent; my $debug = defined $parameter->{debug} ? $parameter->{debug} : 3; # Now see if the user passed the values in a hash reference or directly. my $number = defined $parameter->{number} ? $parameter->{number} : ""; $anvil->Log->variables({source => $THIS_FILE, line => __LINE__, level => $debug, list => { number => $number }}); # Remove any existing commands or leading '+' signs. $number =~ s/,//g; $number =~ s/^\+//g; $anvil->Log->variables({source => $THIS_FILE, line => __LINE__, level => $debug, list => { number => $number }}); # Split on the left-most period. my ($whole, $decimal) = split/\./, $number, 2; $whole = "" if not defined $whole; $decimal = "" if not defined $decimal; # Now die if either number has a non-digit character in it. if (($whole =~ /\D/) or ($decimal =~ /\D/)) { $anvil->Log->variables({source => $THIS_FILE, line => __LINE__, level => $debug, list => { number => $number }}); return ($number); } local($_) = $whole ? $whole : ""; 1 while s/^(-?\d+)(\d{3})/$1,$2/; $whole = $_; # Put it together $number = $decimal ? "$whole.$decimal" : $whole; $anvil->Log->variables({source => $THIS_FILE, line => __LINE__, level => $debug, list => { number => $number }}); return ($number); } =head2 bytes_to_human_readable This takes a number of bytes and converts it to a a human-readable format. Optionally, you can request the human readable size be returned using specific units. If anything goes wrong, C<< !!error!! >> is returned. * Base2 Notation; B B C Yobiabyte (YiB) 2^80 1,208,925,819,614,629,174,706,176 Zebiabyte (ZiB) 2^70 1,180,591,620,717,411,303,424 Exbibyte (EiB) 2^60 1,152,921,504,606,846,976 Pebibyte (PiB) 2^50 1,125,899,906,842,624 Tebibyte (TiB) 2^40 1,099,511,627,776 Gibibyte (GiB) 2^30 1,073,741,824 Mebibyte (MiB) 2^20 1,048,576 Kibibyte (KiB) 2^10 1,024 Byte (B) 2^1 1 * Base10 Notation; B B C Yottabyte (YB) 10^24 1,000,000,000,000,000,000,000,000 Zettabyte (ZB) 10^21 1,000,000,000,000,000,000,000 Exabyte (EB) 10^18 1,000,000,000,000,000,000 Petabyte (PB) 10^15 1,000,000,000,000,000 Terabyte (TB) 10^12 1,000,000,000,000 Gigabyte (GB) 10^9 1,000,000,000 Megabyte (MB) 10^6 1,000,000 Kilobyte (KB) 10^3 1,000 Byte (B) 1 1 Parameters; =head3 base2 (optional) This can be set to C<< 1 >> to return the units in base2 notation, or set to C<< 0 >> to return in base10 notation. The default is controlled by c<< sys::use_base2 >>, which is set to C<< 1 >> by default. The suffix will use C<< XiB >> when base2 notation is used and C<< XB >> will be returned for base10. =head3 bytes (required) This is the number of bytes that will be converted. This can be a signed integer. =head3 unit (optional) This is a letter =cut sub bytes_to_human_readable { my $self = shift; my $parameter = shift; my $anvil = $self->parent; my $debug = defined $parameter->{debug} ? $parameter->{debug} : 3; # Now see if the user passed the values in a hash reference or directly. my $size = defined $parameter->{'bytes'} ? $parameter->{'bytes'} : 0; my $unit = defined $parameter->{unit} ? uc($parameter->{unit}) : ""; my $base2 = defined $parameter->{base2} ? $parameter->{base2} : $anvil->data->{sys}{use_base2}; $anvil->Log->variables({source => $THIS_FILE, line => __LINE__, level => $debug, list => { size => $size, unit => $unit, base2 => $base2, }}); # Expand exponential numbers. if ($size =~ /(\d+)e\+(\d+)/) { my $base = $1; my $exp = $2; $size = $base; for (1..$exp) { $size .= "0"; } } # Setup my variables. my $suffix = ""; my $human_readable_size = $size; # Store and strip the sign my $sign = ""; if ($human_readable_size =~ /^-/) { $sign = "-"; $human_readable_size =~ s/^-//; } $human_readable_size =~ s/,//g; $human_readable_size =~ s/^\+//g; # Die if either the 'time' or 'float' has a non-digit character in it. if ($human_readable_size =~ /\D/) { $anvil->Log->entry({source => $THIS_FILE, line => __LINE__, level => 0, priority => "err", key => "log_0116", variables => { method => "Convert->bytes_to_human_readable()", parameter => "hostnmae", value => $human_readable_size, }}); return ("!!error!!"); } # Do the math. if ($base2) { # Has the user requested a certain unit to use? if ($unit) { # Yup if ($unit =~ /Y/i) { # Yebibyte $human_readable_size = sprintf("%.3f", ($human_readable_size /= (2 ** 80))); $suffix = "YiB"; } elsif ($unit =~ /Z/i) { # Zebibyte $human_readable_size = sprintf("%.3f", ($human_readable_size /= (2 ** 70))); $suffix = "ZiB"; } elsif ($unit =~ /E/i) { # Exbibyte $human_readable_size = sprintf("%.3f", ($human_readable_size /= (2 ** 60))); $suffix = "EiB"; } elsif ($unit =~ /P/i) { # Pebibyte $human_readable_size = sprintf("%.3f", ($human_readable_size /= (2 ** 50))); $suffix = "PiB"; } elsif ($unit =~ /T/i) { # Tebibyte $human_readable_size = sprintf("%.2f", ($human_readable_size /= (2 ** 40))); $suffix = "TiB"; } elsif ($unit =~ /G/i) { # Gibibyte $human_readable_size = sprintf("%.2f", ($human_readable_size /= (2 ** 30))); $suffix = "GiB"; } elsif ($unit =~ /M/i) { # Mebibyte $human_readable_size = sprintf("%.2f", ($human_readable_size /= (2 ** 20))); $suffix = "MiB"; } elsif ($unit =~ /K/i) { # Kibibyte $human_readable_size = sprintf("%.1f", ($human_readable_size /= (2 ** 10))); $suffix = "KiB"; } else { $suffix = "B"; } } else { # Nope, use the most efficient. if ($human_readable_size >= (2 ** 80)) { # Yebibyte $human_readable_size = sprintf("%.3f", ($human_readable_size /= (2 ** 80))); $suffix = "YiB"; } elsif ($human_readable_size >= (2 ** 70)) { # Zebibyte $human_readable_size = sprintf("%.3f", ($human_readable_size /= (2 ** 70))); $suffix = "ZiB"; } elsif ($human_readable_size >= (2 ** 60)) { # Exbibyte $human_readable_size = sprintf("%.3f", ($human_readable_size /= (2 ** 60))); $suffix = "EiB"; } elsif ($human_readable_size >= (2 ** 50)) { # Pebibyte $human_readable_size = sprintf("%.3f", ($human_readable_size /= (2 ** 50))); $suffix = "PiB"; } elsif ($human_readable_size >= (2 ** 40)) { # Tebibyte $human_readable_size = sprintf("%.2f", ($human_readable_size /= (2 ** 40))); $suffix = "TiB"; } elsif ($human_readable_size >= (2 ** 30)) { # Gibibyte $human_readable_size = sprintf("%.2f", ($human_readable_size /= (2 ** 30))); $suffix = "GiB"; } elsif ($human_readable_size >= (2 ** 20)) { # Mebibyte $human_readable_size = sprintf("%.2f", ($human_readable_size /= (2 ** 20))); $suffix = "MiB"; } elsif ($human_readable_size >= (2 ** 10)) { # Kibibyte $human_readable_size = sprintf("%.1f", ($human_readable_size /= (2 ** 10))); $suffix = "KiB"; } else { $suffix = "B"; } } } else { # Has the user requested a certain unit to use? if ($unit) { # Yup if ($unit =~ /Y/i) { # Yottabyte $human_readable_size = sprintf("%.3f", ($human_readable_size /= (10 ** 24))); $suffix = "YB"; } elsif ($unit =~ /Z/i) { # Zettabyte $human_readable_size = sprintf("%.3f", ($human_readable_size /= (10 ** 21))); $suffix = "ZB"; } elsif ($unit =~ /E/i) { # Exabyte $human_readable_size = sprintf("%.3f", ($human_readable_size /= (10 ** 18))); $suffix = "EB"; } elsif ($unit =~ /P/i) { # Petabyte $human_readable_size = sprintf("%.3f", ($human_readable_size /= (10 ** 15))); $suffix = "PB"; } elsif ($unit =~ /T/i) { # Terabyte $human_readable_size = sprintf("%.2f", ($human_readable_size /= (10 ** 12))); $suffix = "TB"; } elsif ($unit =~ /G/i) { # Gigabyte $human_readable_size = sprintf("%.2f", ($human_readable_size /= (10 ** 9))); $suffix = "GB"; } elsif ($unit =~ /M/i) { # Megabyte $human_readable_size = sprintf("%.2f", ($human_readable_size /= (10 ** 6))); $suffix = "MB"; } elsif ($unit =~ /K/i) { # Kilobyte $human_readable_size = sprintf("%.1f", ($human_readable_size /= (10 ** 3))); $suffix = "KB"; } else { $suffix = "b"; } } else { # Nope, use the most efficient. if ($human_readable_size >= (10 ** 24)) { # Yottabyte $human_readable_size = sprintf("%.3f", ($human_readable_size /= (10 ** 24))); $suffix = "YB"; } elsif ($human_readable_size >= (10 ** 21)) { # Zettabyte $human_readable_size = sprintf("%.3f", ($human_readable_size /= (10 ** 21))); $suffix = "ZB"; } elsif ($human_readable_size >= (10 ** 18)) { # Exabyte $human_readable_size = sprintf("%.3f", ($human_readable_size /= (10 ** 18))); $suffix = "EB"; } elsif ($human_readable_size >= (10 ** 15)) { # Petabyte $human_readable_size = sprintf("%.3f", ($human_readable_size /= (10 ** 15))); $suffix = "PB"; } elsif ($human_readable_size >= (10 ** 12)) { # Terabyte $human_readable_size = sprintf("%.2f", ($human_readable_size /= (10 ** 12))); $suffix = "TB"; } elsif ($human_readable_size >= (10 ** 9)) { # Gigabyte $human_readable_size = sprintf("%.2f", ($human_readable_size /= (10 ** 9))); $suffix = "GB"; } elsif ($human_readable_size >= (10 ** 6)) { # Megabyte $human_readable_size = sprintf("%.2f", ($human_readable_size /= (10 ** 6))); $suffix = "MB"; } elsif ($human_readable_size >= (10 ** 3)) { # Kilobyte $human_readable_size = sprintf("%.1f", ($human_readable_size /= (10 ** 3))); $suffix = "KB"; } else { $suffix = "b"; } } } # If needed, insert commas $human_readable_size = $anvil->Convert->add_commas({number => $human_readable_size}); # Restore the sign. if ($sign) { $human_readable_size = $sign.$human_readable_size; } $human_readable_size .= " ".$suffix; return($human_readable_size); } =head2 cidr This takes an IPv4 CIDR notation and returns the dotted-decimal subnet, or the reverse. # Convert a CIDR notation to a subnet. my $subnet = $anvil->Convert->cidr({cidr => "24"}); In the other direction; # Convert a subnet to a CIDR notation. my $cidr = $anvil->Convert->cidr({subnet => "255.255.255.0"}); If the input data is invalid, an empty string will be returned. =head2 Parameters; There are two parameters, each of which is optional, but one of them is required. =head3 cidr (optional) This is a CIDR notation (between 0 and 24) to convert to a dotted-decimal address. =head3 subnet (optional) This is a dotted-decimal subnet to convert to a CIDR notation. =cut sub cidr { my $self = shift; my $parameter = shift; my $anvil = $self->parent; my $debug = defined $parameter->{debug} ? $parameter->{debug} : 3; my $cidr = defined $parameter->{cidr} ? $parameter->{cidr} : ""; my $subnet = defined $parameter->{subnet} ? $parameter->{subnet} : ""; my $output = ""; $anvil->Log->variables({source => $THIS_FILE, line => __LINE__, level => $debug, list => { cidr => $cidr, subnet => $subnet, }}); if ($cidr =~ /^\d{1,2}$/) { # Convert a cidr to a subnet if ($cidr eq "0") { $output = "0.0.0.0"; } elsif ($cidr eq "1") { $output = "128.0.0.0"; } elsif ($cidr eq "2") { $output = "192.0.0.0"; } elsif ($cidr eq "3") { $output = "224.0.0.0"; } elsif ($cidr eq "4") { $output = "240.0.0.0"; } elsif ($cidr eq "5") { $output = "248.0.0.0"; } elsif ($cidr eq "6") { $output = "252.0.0.0"; } elsif ($cidr eq "7") { $output = "254.0.0.0"; } elsif ($cidr eq "8") { $output = "255.0.0.0"; } elsif ($cidr eq "9") { $output = "255.128.0.0"; } elsif ($cidr eq "10") { $output = "255.192.0.0"; } elsif ($cidr eq "11") { $output = "255.224.0.0"; } elsif ($cidr eq "12") { $output = "255.240.0.0"; } elsif ($cidr eq "13") { $output = "255.248.0.0"; } elsif ($cidr eq "14") { $output = "255.252.0.0"; } elsif ($cidr eq "15") { $output = "255.254.0.0"; } elsif ($cidr eq "16") { $output = "255.255.0.0"; } elsif ($cidr eq "17") { $output = "255.255.128.0"; } elsif ($cidr eq "18") { $output = "255.255.192.0"; } elsif ($cidr eq "19") { $output = "255.255.224.0"; } elsif ($cidr eq "20") { $output = "255.255.240.0"; } elsif ($cidr eq "21") { $output = "255.255.248.0"; } elsif ($cidr eq "22") { $output = "255.255.252.0"; } elsif ($cidr eq "23") { $output = "255.255.254.0"; } elsif ($cidr eq "24") { $output = "255.255.255.0"; } elsif ($cidr eq "25") { $output = "255.255.255.128"; } elsif ($cidr eq "26") { $output = "255.255.255.192"; } elsif ($cidr eq "27") { $output = "255.255.255.224"; } elsif ($cidr eq "28") { $output = "255.255.255.240"; } elsif ($cidr eq "29") { $output = "255.255.255.248"; } elsif ($cidr eq "30") { $output = "255.255.255.252"; } elsif ($cidr eq "31") { $output = "255.255.255.254"; } elsif ($cidr eq "32") { $output = "255.255.255.255"; } } elsif ($anvil->Validate->is_ipv4({ip => $subnet})) { if ($subnet eq "0.0.0.0" ) { $output = "0"; } elsif ($subnet eq "128.0.0.0" ) { $output = "1"; } elsif ($subnet eq "192.0.0.0" ) { $output = "2"; } elsif ($subnet eq "224.0.0.0" ) { $output = "3"; } elsif ($subnet eq "240.0.0.0" ) { $output = "4"; } elsif ($subnet eq "248.0.0.0" ) { $output = "5"; } elsif ($subnet eq "252.0.0.0" ) { $output = "6"; } elsif ($subnet eq "254.0.0.0" ) { $output = "7"; } elsif ($subnet eq "255.0.0.0" ) { $output = "8"; } elsif ($subnet eq "255.128.0.0" ) { $output = "9"; } elsif ($subnet eq "255.192.0.0" ) { $output = "10"; } elsif ($subnet eq "255.224.0.0" ) { $output = "11"; } elsif ($subnet eq "255.240.0.0" ) { $output = "12"; } elsif ($subnet eq "255.248.0.0" ) { $output = "13"; } elsif ($subnet eq "255.252.0.0" ) { $output = "14"; } elsif ($subnet eq "255.254.0.0" ) { $output = "15"; } elsif ($subnet eq "255.255.0.0" ) { $output = "16"; } elsif ($subnet eq "255.255.128.0" ) { $output = "17"; } elsif ($subnet eq "255.255.192.0" ) { $output = "18"; } elsif ($subnet eq "255.255.224.0" ) { $output = "19"; } elsif ($subnet eq "255.255.240.0" ) { $output = "20"; } elsif ($subnet eq "255.255.248.0" ) { $output = "21"; } elsif ($subnet eq "255.255.252.0" ) { $output = "22"; } elsif ($subnet eq "255.255.254.0" ) { $output = "23"; } elsif ($subnet eq "255.255.255.0" ) { $output = "24"; } elsif ($subnet eq "255.255.255.128" ) { $output = "25"; } elsif ($subnet eq "255.255.255.192" ) { $output = "26"; } elsif ($subnet eq "255.255.255.224" ) { $output = "27"; } elsif ($subnet eq "255.255.255.240" ) { $output = "28"; } elsif ($subnet eq "255.255.255.248" ) { $output = "29"; } elsif ($subnet eq "255.255.255.252" ) { $output = "30"; } elsif ($subnet eq "255.255.255.254" ) { $output = "31"; } elsif ($subnet eq "255.255.255.255" ) { $output = "32"; } } $anvil->Log->variables({source => $THIS_FILE, line => __LINE__, level => $debug, list => { output => $output }}); return($output); } =head2 hostname_to_ip This method takes a hostname and tries to convert it to an IP address. If it fails, it will return C<< 0 >>. Parameters; =head3 hostname This is the host name (or domain name) to try and convert to an IP address. =cut sub hostname_to_ip { my $self = shift; my $parameter = shift; my $anvil = $self->parent; my $debug = defined $parameter->{debug} ? $parameter->{debug} : 3; my $hostname = defined $parameter->{hostname} ? $parameter->{hostname} : ""; my $ip = 0; $anvil->Log->variables({source => $THIS_FILE, line => __LINE__, level => $debug, list => { hostname => $hostname }}); if (not $hostname) { $anvil->Log->entry({source => $THIS_FILE, line => __LINE__, level => 0, priority => "err", key => "log_0020", variables => { method => "Convert->hostname_to_ip()", parameter => "hostnmae" }}); return($ip); } ### TODO: Check local cached information later. # Try to resolve it using 'gethostip'. my $output = $anvil->System->call({shell_call => $anvil->data->{path}{exe}{gethostip}." -d $hostname"}); $anvil->Log->variables({source => $THIS_FILE, line => __LINE__, level => $debug, list => { output => $output }}); foreach my $line (split/\n/, $output) { $anvil->Log->variables({source => $THIS_FILE, line => __LINE__, level => $debug, list => { line => $line }}); if ($anvil->Validate->is_ipv4({ip => $line})) { $ip = $line; $anvil->Log->variables({source => $THIS_FILE, line => __LINE__, level => $debug, list => { ip => $ip }}); } } return($ip); } =head2 human_readable_to_bytes This takes a "human readable" size with an ISO suffix and converts it back to a base byte size as accurately as possible. It looks for the C<< i >> in the suffix to determine if the size is base2 or base10. This can be overridden with the optional C<< base2 >> or C<< base10 >> parameters. If there is a problem, C<< !!error!! >> is returned. Parameters; =head3 base2 (optional) This tells the method to interpret the human-readable suffix as base2 notation, even if it is in the format C<< XB >> instead of C<< XiB >>. =head3 base10 (optional) This tells the method to interpret the human-readable suffix as base10 notation, even if it is in the format C<< XiB >> instead of C<< XB >>. =head3 size (required) This is the size being converted. It can be a signed integer or real number (with a decimal). If this parameter includes the size suffix, you can skip setting the c<< type >> parameter and this method will break it off automatically. =head3 type (optional) This is the unit type that represents the C<< size >> value. This does not need to be used if the C<< size >> parameter already has the suffix. This value is examined for C<< XiB >> or C<< XB >> notation to determine if the size should be interpreted as a base2 or base10 value when neither C<< base2 >> or C<< base10 >> parameters are set. =cut sub human_readable_to_bytes { my $self = shift; my $parameter = shift; my $anvil = $self->parent; my $debug = defined $parameter->{debug} ? $parameter->{debug} : 3; my $base2 = defined $parameter->{base2} ? $parameter->{base2} : 0; my $base10 = defined $parameter->{base10} ? $parameter->{base10} : 0; my $size = defined $parameter->{size} ? $parameter->{size} : 0; my $type = defined $parameter->{type} ? $parameter->{type} : 0; $anvil->Log->variables({source => $THIS_FILE, line => __LINE__, level => $debug, list => { base2 => $base2, base10 => $base10, size => $size, type => $type, }}); # Start cleaning up the variables. my $value = $size; $size =~ s/ //g; $type =~ s/ //g; $anvil->Log->variables({source => $THIS_FILE, line => __LINE__, level => $debug, list => { size => $size, value => $value }}); # Store and strip the sign, if passed my $sign = ""; if ($size =~ /^-/) { $sign = "-"; $size =~ s/^-//; } elsif ($size =~ /^\+/) { $sign = "+"; $size =~ s/^\+//; } # Strip any commas $size =~ s/,//g; $anvil->Log->variables({source => $THIS_FILE, line => __LINE__, level => $debug, list => { size => $size, sign => $sign }}); # If I don't have a passed type, see if there is a letter or letters after the size to hack off. if ((not $type) && ($size =~ /[a-zA-Z]$/)) { # There was ($size, $type) = ($size =~ /^(.*\d)(\D+)/); } # Make the type lower close for simplicity. $type = lc($type); $anvil->Log->variables({source => $THIS_FILE, line => __LINE__, level => $debug, list => { size => $size, type => $type }}); # Make sure that 'size' is now an integer or float. if ($size !~ /\d+[\.\d+]?/) { # Something illegal was passed. $anvil->Log->entry({source => $THIS_FILE, line => __LINE__, level => 0, priority => "err", key => "log_0117", variables => { size => $size, sign => $sign, type => $type, }}); return("!!error!!"); } # If 'type' is still blank, set it to 'b'. $type = "b" if not $type; # If the type is already bytes, make sure the size is an integer and return. if ($type eq "b") { # Something illegal was passed. if ($size =~ /\D/) { $anvil->Log->entry({source => $THIS_FILE, line => __LINE__, level => 0, priority => "err", key => "log_0118", variables => { size => $size, sign => $sign, type => $type, }}); return("!!error!!"); } return ($sign.$size); } # If the "type" is "Xib" or if '$base2' is set, make sure we're running in Base2 notation. Conversly, # if the type is "Xb" or if '$base10' is set, make sure that we're running in Base10 notation. In # either case, shorten the 'type' to just the first letter to make the next sanity check simpler. if ((not $base2) && (not $base10)) { if ($type =~ /^(\w)ib$/) { # Make sure we're running in Base2. $type = $1; $base2 = 1; $base10 = 0; } elsif ($type =~ /^(\w)b$/) { # Make sure we're running in Base2. $type = $1; $base2 = 0; $base10 = 1; } } # Clear up the last characters now. $type =~ s/^(\w).*/$1/; $anvil->Log->variables({source => $THIS_FILE, line => __LINE__, level => $debug, list => { type => $type }}); # Check if we have a valid type. if (($type ne "p") && ($type ne "e") && ($type ne "z") && ($type eq "y") && ($type ne "t") && ($type ne "g") && ($type ne "m") && ($type ne "k")) { # Poop $anvil->Log->entry({source => $THIS_FILE, line => __LINE__, level => 0, priority => "err", key => "log_0119", variables => { value => $value, size => $size, type => $type, }}); return("!!error!!"); } # Now the magic... lame magic, true, but still. my $bytes = 0; $anvil->Log->variables({source => $THIS_FILE, line => __LINE__, level => $debug, list => { base2 => $base2, base10 => $base10 }}); if ($base10) { if ($type eq "y") { $bytes = Math::BigInt->new('10')->bpow('24')->bmul($size); } # Yottabyte elsif ($type eq "z") { $bytes = Math::BigInt->new('10')->bpow('21')->bmul($size); } # Zettabyte elsif ($type eq "e") { $bytes = Math::BigInt->new('10')->bpow('18')->bmul($size); } # Exabyte elsif ($type eq "p") { $bytes = Math::BigInt->new('10')->bpow('15')->bmul($size); } # Petabyte elsif ($type eq "t") { $bytes = ($size * (10 ** 12)) } # Terabyte elsif ($type eq "g") { $bytes = ($size * (10 ** 9)) } # Gigabyte elsif ($type eq "m") { $bytes = ($size * (10 ** 6)) } # Megabyte elsif ($type eq "k") { $bytes = ($size * (10 ** 3)) } # Kilobyte $anvil->Log->variables({source => $THIS_FILE, line => __LINE__, level => $debug, list => { 'bytes' => $bytes }}); } else { if ($type eq "y") { $bytes = Math::BigInt->new('2')->bpow('80')->bmul($size); } # Yobibyte elsif ($type eq "z") { $bytes = Math::BigInt->new('2')->bpow('70')->bmul($size); } # Zibibyte elsif ($type eq "e") { $bytes = Math::BigInt->new('2')->bpow('60')->bmul($size); } # Exbibyte elsif ($type eq "p") { $bytes = Math::BigInt->new('2')->bpow('50')->bmul($size); } # Pebibyte elsif ($type eq "t") { $bytes = ($size * (2 ** 40)) } # Tebibyte elsif ($type eq "g") { $bytes = ($size * (2 ** 30)) } # Gibibyte elsif ($type eq "m") { $bytes = ($size * (2 ** 20)) } # Mebibyte elsif ($type eq "k") { $bytes = ($size * (2 ** 10)) } # Kibibyte $anvil->Log->variables({source => $THIS_FILE, line => __LINE__, level => $debug, list => { 'bytes' => $bytes }}); } # Last, round off the byte size if it is a float. if ($bytes =~ /\./) { $bytes = $anvil->Convert->round({ number => $bytes, places => 0 }); } if ($sign) { $bytes = $sign.$bytes; } $anvil->Log->variables({source => $THIS_FILE, line => __LINE__, level => $debug, list => { 'bytes' => $bytes }}); return ($bytes); } =head2 round This takes a number and rounds it to a given number of places after the decimal (defaulting to an even integer). This does financial-type rounding. If C<< -- >> is passed in, the same is returned. Any other problems will cause C<< !!error!! >> to be returned. Parameters; =head3 number (required) This is the number being rounded. =head3 places (optional) This is an integer representing how many places to round the number to. The default is C<< 0 >>, rounding the number to the closest integer. =cut sub round { my $self = shift; my $parameter = shift; my $anvil = $self->parent; my $debug = defined $parameter->{debug} ? $parameter->{debug} : 3; # Setup my numbers. my $number = $parameter->{number} ? $parameter->{number} : 0; my $places = $parameter->{places} ? $parameter->{places} : 0; $anvil->Log->variables({source => $THIS_FILE, line => __LINE__, level => $debug, list => { number => $number, places => $places, }}); # Return if the user passed a double-dash. return('--') if $number eq "--"; # Make a copy of the passed number that I can manipulate. my $rounded_number = $number; # Take out any commas. $rounded_number =~ s/,//g; # If there is a decimal place in the number, do the smart math. Otherwise, just pad the number with # the requested number of zeros after the decimal place. if ( $rounded_number =~ /\./ ) { # Split up the number. my ($real, $decimal) = split/\./, $rounded_number, 2; # If there is anything other than one ',' and digits, error. if (($real =~ /\D/) or ($decimal =~ /\D/)) { $anvil->Log->entry({source => $THIS_FILE, line => __LINE__, level => 0, priority => "err", key => "log_0120", variables => { number => $number }}); return ("!!error!!"); } # If the number is already equal to the requested number of places after the decimal, just # return. If it is less, pad the needed number of zeros. Otherwise, start rounding. if ( length($decimal) == $places ) { # Equal, return. return $rounded_number; } elsif ( length($decimal) < $places ) { # Less, pad. $rounded_number = sprintf("%.${places}f", $rounded_number); } else { # Greater than; I need to round the number. Start by getting the number of places I # need to round. my $round_diff = length($decimal) - $places; # This keeps track of whether the next (left) digit needs to be incremented. my $increase = 0; # Now loop the number of times needed to round to the requested number of places. for (1..$round_diff) { # Reset 'increase'. $increase = 0; # Make sure I am dealing with a digit. if ($decimal =~ /(\d)$/) { my $last_digit = $1; $decimal =~ s/$last_digit$//; if ($last_digit > 4) { $increase = 1; if ($decimal eq "") { $real++; } else { $decimal++; } } } } if ($places == 0 ) { $rounded_number = $real; } else { $rounded_number = $real.".".$decimal; } } } else { # This is a whole number so just pad 0s as needed. $rounded_number = sprintf("%.${places}f", $rounded_number); } # Return the number. return ($rounded_number); } # =head3 # # Private Functions; # # =cut ############################################################################################################# # Private functions # #############################################################################################################